pennsylvania

DEPARTMENT OF TRANSPORTATION

Artificial Intelligence (Al) for Building a
Landslide Inventory & Advanced
Landslide Warning System in PA

FINAL REPORT

August 3, 2023

By Tong Qiu and Jun Xiong

Pennsylvania State University PENNE:lréTE

COMMONWEALTH OF PENNSYLVANIA
DEPARTMENT OF TRANSPORTATION DR

)

&
'?/CA No\lﬂ;b

DEp,
R \)‘\“ 4,9}
O .

CONTRACT # PSUCIAMTIS2019 y
WORK ORDER # 02 STargs oF "




Technical Report Documentation Page

1. Report No. 2. Government Accession No.

FHWA-PA-2024-003-CIAMTIS WO 02

3. Recipient’s Catalog No.

4. Title and Subtitle

Artificial Intelligence (Al) for Building a Landslide Inventory & Advanced
Landslide Warning System in PA

5. Report Date
August 3, 2023

6. Performing Organization Code

7. Author(s)

Tong Qiu and Jun Xiong

8. Performing Organization Report No.
LTI 2024-01

9. Performing Organization Name and Address

The Thomas D. Larson Pennsylvania Transportation Institute
The Pennsylvania State University

201 Transportation Research Building

University Park, PA 16802

10. Work Unit No. (TRAIS)

11. Contract or Grant No.

3900039095/PSUCIAMTIS2019 WO 02

12. Sponsoring Agency Name and Address

The Pennsylvania Department of Transportation
Bureau of Planning and Research
Commonwealth Keystone Building

400 North Street, 6 Floor

Harrisburg, PA 17120-0064

13. Type of Report and Period Covered

Final Report  01/03/2022 — 08/03/2023

14. Sponsoring Agency Code

15. Supplementary Notes

Heather Sorce served as the Project/Contract Administrator; and Beverly Miller served as the Technical Advisor.

16. Abstract

This report presents the results of a study aiming at developing artificial intelligence (Al) models for advanced warning of rainfall-
induced landslides for unstable slopes above or below state-maintained roadways in Pennsylvania. Two landslide databases for
spatial and spatiotemporal analyses of landslides in Pennsylvania and adjacent areas are compiled. Landslide susceptibility maps
(LSMs) are generated for PennDOT Districts 11 and 12 and adjacent areas, including northern West Virginia and eastern Ohio. The
results indicate that the spatiotemporal machine learning (ML) model can predict landslides, accounting for both spatial terrain
factors and temporal rainfall factors, and the model outperforms pure spatial ML models with the same database size. The LSMs
generated from this study highlight areas having very low to very high risk of landslide susceptibility with precipitation, which may
be used to establish a hierarchy and mitigate risk for slopes at “very high risk” for landslide susceptibility. The maps may also be
used for forecasting purposes. For example, they may be used as an aid for planning and programming purposes to address
slopes with “very high” landslide susceptibility first. The maps may be used in the event of incoming storms to target slopes with a
very high risk of landslide susceptibility so that mitigation or preventative measures (such as temporary road closure) can be
employed to ensure safe travel and minimize damage. In addition, the maps may also help to target post-storm roadway/slope

inspections to the most critical and high-risk locations first.

17. Key Words

Artificial intelligence, landslide, landslide database, landslide warning system,
machine learning, precipitation, prediction

18. Distribution Statement

No restrictions. This document is available
from the National Technical Information Service,
Springfield, VA 22161

19. Security Classif. (of this report)

Unclassified Unclassified

20. Security Classif. (of this page)

21. No. of Pages 22. Price

102 $86,695.00

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized



DISCLAIMER
This work was sponsored by the Pennsylvania Department of Transportation. The contents of this report
reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented
herein. The contents do not necessarily reflect the official views or policies of the Commonwealth of
Pennsylvania at the time of publication. This report does not constitute a standard, specification, or
regulation.



Table of Contents

Glossary of Artificial Intelligence Terms.............cccoooiiiiiiiiiiii e I
T INEEOAUCTION ...ttt ettt ettt e e at e e s ab e e s abe e s bt e e sabeesabeesabaeesabeesabaeenbaeenabeesabeesseeenns 1
1.1 BACKEIOUIA ...ttt ettt e s sttt e e st e e sttt e e s bbb e e seasbeeesanbbeeesanneeeean 1
1.2 Research objectives and tasKs ...........ccccooiiiiiiiiiiiiiiiieiecec e s s 2

2 Landslide Database Compilation...............ccocooiiiiiiiiiiiii e 3
2.1 DIALA SOUICES.......eeieiiieiiieeiie ettt et ee ettt ettt e s bt e e bee e s bt e sabeesabeeesabeesabeeabeeeambeesabeeeaneeesabeesareeeneeesareesseenn 3
2.1.1 Data sources for spatial analysis............cccocoiiiiiiiiniiiiin e 3
2.1.2 Data sources for spatiotemporal analysis ...........ccccccoeviiiiiiiriiiiiinieiie e 5

2.2 Data acquisition and database establishment...................ccocccoiviiniiiii e, 9
2.2.1 Database for spatial analysiS...........ccocccoeiiiiiiiiiii i 9
2.2.2 Database for spatiotemporal analysis ..............cccoooiiiiiiinini 12

3 Collection of Pertinent INfOrmation ...............ccoceiiiiiiiiiiiiiiiie e e 16
4 Landslide Susceptibility ASSESSIENT ............ccceoiiiiiiiiiiiiiiiie ittt sae e sbeesbeeesaee e e 31
5 Frequency Ratio Method for LSM ...........cooiiiiiiiie e e s 32
5.1 Framework of frequency ratio method..................cccooiiiiiiiinin e 33
5.2 Results of the frequency ratio method .................ccoociiiiiiiiniiiin e 37

6 ML Methods for LLSIVL .........oiiiiiiiieiiie ettt ettt ettt e sab e st e bt e e s ate e sbe e e bt e e sabeesabeesneeesabeesanes 40
6.1 ML Al@OTItRINIS.......c.ueiiiiiiiiiiiiee ettt st st e e st e e s be e s bt e e sab e e sabeesabeeesareesares 41
6.2 Landslide database for ML ...............cooooiiiiiiiii e e 43
6.3 Evaluation methods ..o 45
6.4 ML results and LSIML..........cooiiiiiiiiiiiiteet ettt ettt st e st e e s bt e s bt e e sabeesabeesneeesabeesanes 49
6.5 Model explainability ..........ccccccoiiiiiiiiiiiiii et saes 52

7 Spatiotemporal Analysis fOor LIS ..........cccooiiiiiiiiiiieiiie ettt sbe e ste e ssbae e sabeesabeeeees 53
7.1 Landslide database for spatiotemporal ML ...............cocccooiiiiiiiieeeee e, 54
7.2 Spatiotemporal causative facCtOrs.............ccooiiiiiiiiiiii e 55
7.3 Spatiotemporal sampling Methods ... 56
7.4 Spatiotemporal ML with different spatiotemporal datasets................cccccceevveiniiniiinincennieennn, 58
7.5 SpatiotempPoral LISV .........cooiiiiii e 66
7.5.1 Pure spatial susceptibility map .............cccoooiiiiiiii e 66

7.5.2 Spatiotemporal susceptibility map ... 68



8 Conclusions and LIMItationsS.............ooouvuumiiiiiiiiiiiiiee e e e e e e e er s e e e eeress b s eeeaeees 71

8.1 COMCIUSIONS ...ttt sttt e st e s bt e ettt e bt e e sabe e e be e e snbeesareesaneeesareesanes 71
8.2 LAMIEALIONS .....coouviiiiiiiiii ittt et e et e e bt e e s bt e s bt e e s b e e s beesbaeesareesares 73
9 Recommendations and Instructions for Generating LSMs using the Developed ML Models........ 74
28 PO 111 T B 1] P U (1) ¢ 11 OO T PO PTSURTPR 75
.11 DIEIIVELEES.....ceeiiiiiiieeee ettt r e e e s r e e ree s 75
9.1.2 REQUITEIMEIILS.......ooiiiiiiiiiiiiiie ettt et r e e e r e n e e sneesmeesnees 75
0.1.3 INSEIUCHIOMS ......coeniiiiiiiieiie ettt ettt et e sttt e st e e st e e sab e e sabeesabeessbeesabeesabeeeabbeesabeesabeeeseeas 75
0.2, LoCal PIatfOr.........ooiiiiiiiiiiee et st e st e s ba e e nateesabeeeaees 84
9.2 0 DIEIIVETEES.....ccueeiiiiieiee et sttt st s s e s b e et e s e nee s 84
9.2.2 REQUIFEINEIILS.........ooiiiiiiiiiiiiie ettt e ste e s st e st e s b e e s ame e e sareesareesreeesmteesaneeenneees 84
0.2.3 INSEIUCHIOMS ..ottt ettt ettt e st e st e e sab e e s bt e s b e e esmeeesabeeeabeeebeeesabeesneeenneas 84

| S (3 S (LS ST PTRRTR 85



Glossary of Artificial Intelligence Terms

http://robotics.stanford.edu/~ronnvk/glossary.html

https://ml-cheatsheet.readthedocs.io/en/latest/glossary.html

https://developers.google.com/machine-learning/glossary

A

Accuracy

Percentage of correct predictions made by the model.

Algorithm

A method, function, or series of instructions used to generate a machine learning model.
Examples include linear regression, decision trees, support vector machines, and neural
networks.

Artificial Intelligence (AI)

A non-human program or model that can solve sophisticated tasks. For example, a program
or model that translates text or a program or model that identifies diseases from radiologic
images both exhibit artificial intelligence.

Formally, machine learning is a sub-field of artificial intelligence. However, in recent years,
some organizations have begun using the terms artificial intelligence and machine learning
interchangeably.

Attribute (field, variable, feature)

B

A quality describing an observation (e.g., color, size, weight). In Excel terms, these are
column headers.

Baseline

Batch

A model used as a reference point for comparing how well another model (typically, a
more complex one) is performing. For example, a logistic regression model might serve as
a good baseline for a deep model.

For a particular problem, the baseline helps model developers quantify the minimal
expected performance that a new model must achieve for the new model to be useful.

The set of examples used in one training iteration. The batch size determines the number
of examples in a batch.


http://robotics.stanford.edu/%7Eronnyk/glossary.html
https://ml-cheatsheet.readthedocs.io/en/latest/glossary.html

Bias metric

What is the average difference between your predictions and the correct value for that
observation?

e Low bias could mean every prediction is correct. It could also mean half of your
predictions are above their actual values and half are below, in equal proportion,
resulting in a low average difference.

e High bias (with low variance) suggests your model may be underfitting and you’re
using the wrong architecture for the job.

Bias term

C

Allow models to represent patterns that do not pass through the origin. For example, if all
my features were 0, would my output also be zero? Is it possible there is some base value
upon which my features have an effect? Bias terms typically accompany weights and are
attached to neurons or filters.

Categorical Variables

Variables with a discrete set of possible values. Can be ordinal (order matters) or nominal
(order doesn’t matter).

Classification

Predicting a categorical output.

e Binary classification predicts one of two possible outcomes (e.g., is email spam or not
spam? will landslide occur at a location or not?)

e Multi-class classification predicts one of multiple possible outcomes (e.g., is this a
photo of a cat, dog, horse, or human?)

Classification Threshold

The lowest probability value at which we’re comfortable asserting a positive classification.
For example, if the predicted probability of having a landslide is > 50%, return True,
otherwise return False; in this case, 50% is the classification threshold for landslide
occurrence.

Classifier

A mapping from unlabeled instances to (discrete) classes. Classifiers have a form (e.g.,
decision tree) plus an interpretation procedure (including how to handle unknowns, etc.).
Some classifiers also provide probability estimates (scores), which can be the threshold to
yield a discrete class decision thereby taking into account a utility function.

Confusion Matrix

A table that describes the performance of a classification model by grouping predictions
into 4 categories.
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e True Positives: we correctly predicted that landslide occurred at a location.

e True Negatives: we correctly predicted that landslide did not occur at a location.

e False Positives: we incorrectly predicted that landslide occurred at a location

o False Negatives: we incorrectly predicted that landslide did not occur at a location

Continuous Variables

Variables with a range of possible values defined by a number scale (e.g., sales, lifespan).

Convergence

A state reached during the training of a model when the loss changes very little between
each iteration.

Cross-validation

D

A method for estimating the accuracy (or error) of an inducer by dividing the data into k
mutually exclusive subsets (the “folds”) of approximately equal size. The inducer is trained
and tested k times. Each time it is trained on the data set minus a fold and tested on that
fold. The accuracy estimate is the average accuracy for the k folds.

Data set

A schema and a set of instances matching the schema. Generally, no ordering on instances
is assumed. Most machine learning work uses a single fixed-format table.

Commonly (but not exclusively) organized in one of the following formats:

e aspreadsheet
e afile in CSV (comma-separated values) format

Deep Learning

Deep Learning is derived from a machine learning algorithm called perceptron or multi-
layer perceptron that is gaining more and more attention nowadays because of its success
in different fields such as computer vision to signal processing and medical diagnosis to
self-driving cars. Like other Al algorithms, deep learning is based on decades of research.
Nowadays, we have more and more data and cheap computing power that makes this
algorithm really powerful in achieving state-of-the-art accuracy. In the modern world, this
algorithm is known as artificial neural network. Deep learning is much more accurate and
robust compared to traditional artificial neural networks. But it is highly influenced by
machine learning’s neural network and perceptron networks.

Dimension

Dimension for machine learning and data scientist is different from physics. Here,
dimension of data means how many features you have in your data ocean (dataset). e.g., in
case of object detection application, flatten image size and color channel (e.g., 28*%28%*3) is
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a feature of the input set. In the case of house price prediction (maybe) house size is the
data-set so we call it one-dimensional data.

E

Epoch

An epoch describes the number of times the algorithm sees the entire data set.

F

False Positive Rate
Defined as

o False Positives
FPR =1 - Specificity =

False Positives + True Negatives
The False Positive Rate forms the x-axis of the ROC curve.
Feature

With respect to a dataset, a feature represents an attribute and value combination. Color is
an attribute. “Color is blue” is a feature. In Excel terms, features are similar to cells. The
term feature has other definitions in different contexts.

Feature Selection

Feature selection is the process of selecting relevant features from a dataset for creating a
Machine Learning model.

Feature Vector

A list of features describing an observation with multiple attributes. In Excel, we call this
a row.

G

Gradient Accumulation

A mechanism to split the batch of samples used for training a neural network into several
mini-batches of samples that will be run sequentially. This is used to enable using large
batch sizes that require more GPU memory than available.

H

Hyperparameters

Hyperparameters are higher-level properties of a model such as how fast it can learn
(learning rate) or the complexity of a model. The depth of trees in a Decision Tree or the
number of hidden layers in a neural network are examples of hyperparameters.
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I

Instance (example, case, record)

L

A data point, row, or sample in a dataset. Another term for observation.

Label

The “answer” portion of observation in supervised learning. For example, in a dataset used
to classify flowers into different species, the features might include the petal length and
petal width, while the label would be the flower’s species.

Learning Rate

Loss

M

The size of the update steps to take during optimization loops like Gradient Descent. With
a high learning rate, we can cover more ground with each step, but we risk overshooting
the lowest point since the slope of the hill is constantly changing. With a very low learning
rate, we can confidently move in the direction of the negative gradient since we are
recalculating it so frequently. A low learning rate is more precise, but calculating the
gradient is time-consuming, so it will take a very long time to get to the bottom.

Loss = actual value (from the dataset)-predicted value (from ML model) The lower the loss,
the better the model (unless the model has over-fitted to the training data). The loss is
calculated on training and validation and its interpretation is how well the model is doing
for these two sets. Unlike accuracy, loss is not a percentage. It is a summation of the errors
made for each example in training or validation sets.

Machine Learning (ML)

Model

Mitchell (1997) provides a succinct definition: “A computer program is said to learn from
experience E with respect to some class of tasks T and performance measure P, if its
performance at tasks in T, as measured by P, improves with experience E.” In simple
language, machine learning is a field in which human-made algorithms can learn by
themselves or predict the future for unseen data.

A data structure that stores a representation of a dataset (weights and biases). Models are
created/learned when you train an algorithm on a dataset.



N

Neural Networks

Neural Networks are mathematical algorithms modeled after the brain’s architecture,
designed to recognize patterns and relationships in data.

Normalization

Restriction of the values of weights in regression to avoid overfitting and improve the
computation speed.

Noise

Any irrelevant information or randomness in a dataset obscures the underlying pattern.

O

Observation

A data point, row, or sample in a dataset. Another term for instance.
Outlier

An observation that deviates significantly from other observations in the dataset.
Overfitting

Overfitting occurs when your model learns the training data too well and incorporates
details and noise specific to your dataset. You can tell a model is overfitting when it
performs great on your training/validation set, but poorly on your test set (or new real-
world data).

P

Parameters

Parameters are properties of training data learned by training a machine learning model or
classifier. They are adjusted using optimization algorithms and are unique to each
experiment.

Examples of parameters include:

e weights in an artificial neural network
e support vectors in a support vector machine
e coefficients in a linear or logistic regression

Precision

In the context of binary classification (Yes/No), precision measures the model’s
performance at classifying positive observations (i.e., “Yes”). In other words, when a
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positive value is predicted, how often is the prediction correct? We could game this metric
by only returning positive for the single observation we are most confident in.

True Positives

" True Positives + False Positives

Recall

Also called sensitivity. In the context of binary classification (Yes/No), recall measures
how “sensitive” the classifier is at detecting positive instances. In other words, for all the
true observations in our sample, how many did we “catch.” We could game this metric by
always classifying observations as positive.

True Positives

" True Positives + False Negatives
Recall vs. Precision

Say we are analyzing Brain scans and trying to predict whether a person has a tumor (True)
or not (False). We feed it into our model and our model starts guessing.

e Precision is the % of True guesses that were actually correct. If we guess 1 image is
True out of 100 images and that image is actually True, then our precision is 100%.
Our results aren’t helpful, however, because we missed 10 brain tumors. We were super
precise when we tried, but we didn’t try hard enough.

e Recall, or Sensitivity, provides another lens through which to view how good our
model is. Again, let’s say there are 100 images, 10 with brain tumors, and we correctly
guessed 1 had a brain tumor. Precision is 100%, but recall is 10%. Perfect recall
requires that we catch all 10 tumors.

Regression
Predicting a continuous output (e.g., price, sales).
Regularization

Regularization is a technique utilized to combat the overfitting problem. This is achieved
by adding a complexity term to the loss function that gives a bigger loss for more complex
models.

ROC (Receiver Operating Characteristic) Curve

A plot of the true positive rate against the false positive rate at all classification thresholds.
This is used to evaluate the performance of a classification model at different classification
thresholds. The area under the ROC curve can be interpreted as the probability that the
model correctly distinguishes between a randomly chosen positive observation (e.g.,
“spam”) and a randomly chosen negative observation (e.g., “not spam”).
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S

Segmentation

It is the process of partitioning a data set into multiple distinct sets. This separation is done
such that the members of the same set are similar to each other and different from the
members of other sets.

Specificity

In the context of binary classification (Yes/No), specificity measures the model’s
performance at classifying negative observations (i.e., “No”). In other words, when the
correct label is negative, how often is the prediction correct? We could game this metric if
we predict everything as negative.

True Negatives

 True Negatives + False Positives
Supervised Learning

Training a model using a labeled dataset.

T

Test Set

A set of observations used at the end of model training and validation to assess the
predictive power of your model. How generalizable is your model to unseen data?

Training Set
A set of observations used to generate machine learning models.
Transfer Learning

A machine learning method where a model developed for a task is reused as the starting
point for a model on a second task. In transfer learning, we take the pre-trained weights of
an already trained model (one that has been trained on millions of images belonging to
1000’s of classes, on several high-power GPUs for several days) and use these already
learned features to predict new classes.

True Positive Rate

Another term for recall, i.e.

True Positives
TPR= — .
True Positives + False Negatives

The True Positive Rate forms the y-axis of the ROC curve.
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U

Underfitting

Underfitting occurs when your model over-generalizes and fails to incorporate relevant
variations in your data that would give your model more predictive power. You can tell a
model is underfitting when it performs poorly on both training and test sets.

Universal Approximation Theorem

A neural network with one hidden layer can approximate any continuous function but only
for inputs in a specific range. If you train a network on inputs between -2 and 2, then it will
work well for inputs in the same range, but you can’t expect it to generalize to other inputs
without retraining the model or adding more hidden neurons.

Vv

Validation Set

A set of observations used during model training to provide feedback on how well the
current parameters generalize beyond the training set. If the training error decreases but the
validation error increases, your model is likely overfitting, and you should pause training.

Variance
How tightly packed are your predictions for a particular observation relative to each other?

e Low variance suggests your model is internally consistent, with predictions varying
little from each other after every iteration.

e High variance (with low bias) suggests your model may be overfitting and reading too
deeply into the noise found in every training set.
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1 Introduction
1.1 Background

Artificial intelligence (AI) has become an important technology to solve many problems in a
variety of areas, like healthcare, entertainment, banking, education, science, and almost everything
else in the world today. Based on the success of Al in various domains, it is also becoming more
significant and effective in the fields of engineering and natural science, including hazard
prediction. Among various natural hazards, landslides are a significant geologic hazard throughout
most of southwestern Pennsylvania and in certain other parts of the state (Delano and Wilshusen
2001). A landslide is the gravity-driven movement of an unstable mass of rock, unconsolidated
soil, or debris down a slope. According to the mode of material movement, landslides can be
categorized into three main types: falling, sliding, and flowing (Cruden and Varnes 1996).

Combinations of these types are also common.

Landslides could destroy utilities, structures, and transportation routes, causing travel delays
and other negative effects. In Pennsylvania, landslides cause much damage each year. In a 1986
study, more than 700 recent and active landslides in Allegheny County were identified. U.S.
Geological Survey (USGS) landslide-inventory maps indicated thousands of landslides in
Allegheny and Washington Counties. A study by the Pennsylvania Geological Survey also
included the identification of 480 recent and active landslides and nearly 1000 old or unknown
landslides in the Williamsport area in north-central Pennsylvania. In Pennsylvania, especially in
the Pittsburgh region, many landslides are repaired incompletely or not at all. For most landslide
events in Pennsylvania, the cost is not expensive but still significant. Cost estimates of several
hundred thousand dollars for stabilization and repair of a landslide affecting two or three properties
are typical. When maintenance costs surpass the value of the property, abandonment is often the
solution. The state transportation department in large municipalities has incurred significant
expenses as a result of landslide damage and additional construction costs for new roads in

landslide-prone areas (Delano and Wilshusen 2001).

It is expected that landslides will occur more frequently in the future due to increased
urbanization, deforestation, and precipitation intensity due to global climate change. The repair
and mitigation work, roadway reconstruction costs, travel delays, and other side effects could be

significantly reduced if an advanced warning system of landslides could be provided to, and



implemented by transportation officials to address landslides before they affect the safety, cause

inconvenience, and increase cost to the public.

1.2 Research objectives and tasks

The study aims to use machine learning (ML) techniques for landslide susceptibility
assessment in Pennsylvania, particularly in the southwest regions (i.e., PennDOT Districts 11 and
12). A warning system for rainfall-induced landslides is developed. The warning system is based
on the analysis combining spatial and temporal prediction, where the probability of landslide

occurrence is predicted both in time and space.

For the spatial analysis, a landslide susceptibility map (LSM) is developed to identify areas
subject to landslide risks ranked from low to high. The LSM takes into account where landslides
may potentially occur and what causes them. In the present study, different ML algorithms are
applied to find the underlying relationships between landslide occurrence and spatial causative
factors (e.g., slope angle, elevation, soil properties, etc.). The probability of landslide occurrence
is obtained from ML algorithms, and the susceptibility map is constructed using the model with

the best performance as evaluated by comprehensive evaluation matrices.

For the temporal analysis, the risk of landslides is highly related to precipitation, which is a
variable of time. In different physiographic and climatic regions worldwide, rainfall is recognized
as one of the most common triggers for landslides. In the present study, to predict landslides on a
temporal scale, cumulative precipitation factors are included as temporal features. By considering
both static spatial and time-varying precipitation factors, spatiotemporal LSM is conducted with

ML techniques.

To develop the warning system and achieve the proposed goals, the study consists of four main
tasks. Tasks 1 and 2 focus on compiling a database and collecting pertinent information for existing
rainfall-induced landslides in Pennsylvania, which serve as the ground truth for training ML
models. The results of Task 1 and Task 2 are presented in Section 2 and Section 3, respectively.
Task 3 focuses on developing, training, and testing ML models to predict the occurrence of
landslides both in space and time. The results of Task 3 are presented in Sections 4 through 7. Task

4 focuses on developing the final project report. Section 8 presents the major conclusions of this



study and limitations of the approaches used. Section 9 presents recommendations and instructions

for generating LSMs using the ML models developed in this study.

2 Landslide Database Compilation
2.1 Data sources

In the present study, two databases of rainfall-induced landslides in Pennsylvania and adjacent
areas, particularly those in the southwest regions of Pennsylvania (i.e., PennDOT Districts 11 and
12), are compiled based on Google Earth and other sources of satellite images. The two databases
serve distinct purposes: one for spatial analysis and the other for spatiotemporal analysis. For the
spatial analysis, a larger landslide database was compiled without event dates. Since spatial
analysis focuses on the relationships between landslide spatial distribution and relevant static
topographic and geotechnical factors (e.g., slope angle, soil strength parameters), event dates and
other time variables are not necessary. For the spatiotemporal analysis, a small landslide database
with event dates was compiled. Landslides recorded with event dates are rare to collect, resulting
in a smaller size of database; however, every landslide event in this database contains more detailed

information.

2.1.1 Data sources for spatial analysis

For spatial analysis, the following data sources are used for the compilation of the database. In
the 1970s-1980s, John S. Pomeroy and other researchers of USGS published a series of Topo
sheets to identify landslides and related features based on topography from aerial photographs by
multiplex methods (Pomeroy and William 1979). The maps show the area that was active or has
recent evidence of a slide in several counties of southwestern Pennsylvania. A typical sheet created

by John S. Pomeroy is shown in Figure 1.
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Figure 1. Landslides and related features map by John S. Pomeroy in 1979.

Landslides and landslide potential for southwestern Pennsylvania were then digitized from
those USGS Topo sheets. The digitized map is openly available on the Pennsylvania Department
of Conservation and Natural Resources website. The database is stored in the format of polygon
shapefiles corresponding to landslide locations on the map, which is easy for further process and
conversion. The digitally documented landslides in southwestern Pennsylvania are shown in

Figure 2.
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Figure 2. Documented active landslide polygons in southwestern Pennsylvania.

In this study, the digitized USGS landslide inventory was incorporated as the database for
spatial analysis as it contains much more landslides than other available sources, and the polygon
shapefile provides the possibility of implementing various methods for LSM compared to the point

shapefile.

2.1.2 Data sources for spatiotemporal analysis

Temporal analysis requires landslide events with accurate event dates so that time-varying
precipitation data can be incorporated. In the present study, landslide data mainly comes from three
sources: USGS Landslide Inventory, NASA Cooperative Open Online Landslide Repository
(COOLR), and PennDOT District 12 Slide Database. The first two data sources are available from
relevant official websites and are open for the public to download. District 12 Slide Database was
provided by PennDOT district engineers, and the database contains comprehensive and detailed
information of each landslide recorded by the district engineers. The compiled database contains
landslides mainly in Pennsylvania; however, considering similar terrain and climate conditions
(i.e., precipitation), landslide data in adjacent areas is also included to extend the database. Hence,
the landslide database for spatiotemporal analysis covers Pennsylvania, northern West Virginia,

eastern Ohio, and New Jersey.



USGS Landslide Inventory is a web-based interactive map with a consistent set of landslide
data. The searchable map includes contributions from many local, state, and federal agencies and
provides links to the original digital inventory files for further information (Eric et al. 2022).
Considering that landslide inventories are typically collected and maintained by different agencies
and institutions, usually within specific jurisdictional boundaries and often with varied objectives
and information attributes or even in disparate formats, USGS collaborated with state geological
surveys and other federal agencies and released these data to provide an openly accessible,
centralized map of existing information on landslide occurrence across the entire U.S. (Eric et al.
2022). Given the wide range of landslide information sources in this data compilation, an attribute
is provided to assess the relative confidence in the characterization of the location of each landslide.
Confidence (1): possible landslide in the area; Confidence (2): probable landslide in the area;
Confidence (3): likely landslide at or near this location; Confidence (5): confident consequential
landslide at this location; and Confidence (8): high confidence in extent or nature of landslide (Eric
et al. 2022). Since the current USGS landslide inventory is not comprehensive, as further mapping
is still needed in many parts of the country, periodic updates of the database are planned as new or
improved data become available. To compile a reliable landslide database in Pennsylvania, only
landslide data points with Confidence (5) and (8) are collected and added to our database in this
study. Figure 3 shows landslide data points in Pennsylvania and adjacent states displayed on USGS

Landslide Inventory online map.

U.S. Landslide Inventory
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>

Figure 3. USGS landslide inventory online map.



The NASA Cooperative Open Online Landslide Repository (COOLR) project provides an
open platform where scientists and citizen scientists around the world can share landslide reports
to guide awareness of landslide hazards for improving scientific modeling and emergency response.
Landslides can be submitted to the Landslide Reporter web application or directly to the NASA
landslides project team. All the data submitted is made available on the data portal Landslide
Viewer, which shows referenced and imported landslide inventories from all over the world

(Kirschbaum et al. 2010 and 2015)

As an important part of the NASA landslide project, COOLR is a worldwide inventory of
landslide events. COOLR currently includes three data sources: NASA’s Global Landslide Catalog
(GLC), Landslide Reporter Catalog (LRC), and other collated landslide inventories. NASA GLC
currently contains more than 11,500 reports on landslides, debris flows, rock avalanches, etc.
around the world, in which reports of landslides are found primarily in online media, including
news articles and other databases. However, the compilation of GLC has been a manual and very
time-consuming process that is hard to maintain individually; hence, LRC and collated landslides
from other institutions are needed to provide an open platform for the global citizen science
community to add reports to expand and fill in the gaps in current data (Kirschbaum et al. 2010

and 2015).

In this study, some landslide data points were collected from the data portal NASA Landslide
Viewer. The data points in Pennsylvania from Landslide Viewer are shown in Figure 4. The
number within each yellow circle in the Viewer represents the number of landslide events recorded

in that area, which can be zoomed in for accurately locating the landslides within the area.
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Figure 4. NASA Landslide Viewer.

PennDOT District 12 is responsible for the state-maintained transportation network in the
region of several counties, including Fayette, Greene, Washington, and Westmoreland. PennDOT
District 12 Slide Database contains pertinent information on identified landslide sites, including
the accurate location of the landslide, failure type, identified event date, and other important
information. There are 212 events in total in the database, among which there are 134 slides based
on the failure type. Since not all slide events have identified event dates, 50 events with event dates
were collected and added to the database. Figure 5 shows portions of the District 12 Slide Database

in Excel format.
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Figure 5. PennDOT District 12 Slide Database.



2.2 Data acquisition and database establishment
2.2.1 Database for spatial analysis

Based on the digitized map of USGS Topo sheets, the database for spatial analysis covers the
regions in southwestern Pennsylvania. The study area is shown in Figure 6, which consists of eight

counties: Butler, Armstrong, Indian, Beaver, Allegheny, Westmoreland, Washington, and Greene.
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Figure 6. Study area in southwestern Pennsylvania.
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In total, there are 4,543 landslide events compiled in the database for spatial analysis, as Figure
7 shows. To display the data distribution clearly and handle relevant calculations and conversion
conveniently, all data were compiled and stored in the form of point shapefiles on the ArcGIS
platform, as shown in Figure 8. ArcGIS is a geographic information system (GIS) for working
with maps and geographic information maintained by the Environmental Systems Research
Institute (Esri). As a powerful geospatial software, ArcGIS offers various and comprehensive tools
for users to view, edit, manage, and analyze geographic data. In the database, the original polygon
shapefile of landslides downloaded from the database of the Pennsylvania Department of
Conservation and Natural Resources was converted into a point shapefile. The red dots and marks
on the map represent the recorded landslide events. The information attached to each landslide is

in the format of standard tables in ArcGIS, as shown in Figure 8.

It is convenient to transfer all information in the database from ArcGIS to other platforms. For
example, after data calculation and processing, to better visualize the relationship between the
terrain and landslide distribution, the database could be transferred to Google Earth directly from
ArcGIS, together with all pertinent information. Google Earth is a free desktop geographic
information system with satellite imagery covering all of Earth’s landmasses. The database can be
stored in Google Earth as KML or KMZ file. A KML file stores geographic modeling information
in the Keyhole Markup Language (KML), which is a geographic information systems data format.
It includes placemarks, points, lines, polygons, and images. A KMZ file consists of a main KML
file and supporting files that are packaged using a Zip utility into one unit called an archive. The
KMZ file can then be stored and emailed as a single entity. Figure 9 shows the landslide spatial
database transferred to Google Earth. For each landslide, the relevant information is attached and

can be displayed when the mark is clicked, as shown in Figure 9.

In addition to being transferable to Google Earth, the database is also exported in the format
of an Excel table. In practical engineering applications, tabular databases are often the most
intuitive and convenient tools to handle a large amount of data. The Excel tabular database is
shown in Figure 10. In this database, landslide location, data source, and pertinent geotechnical
variables are recorded in rows and columns. The tabular database is also convenient to serve as

ML input data.
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Figure 10. Database for spatial analysis in Excel format.
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2.2.2 Database for spatiotemporal analysis

Based on the three data sources: USGS Landslide Inventory, NASA COOLR, and PennDOT
District 12 Slide Database, a landslide database for spatiotemporal analysis was compiled with 387
landslide events in total. Since there is an overlap between the recorded data from USGS and
NASA, the overlapped data were identified by manual comparison and were not included in the
database. The number of landslides with their corresponding source and regional distribution is

shown in Table 1.

Table 1. Landslides distribution with data source and region.

Number of

landslides Region Data source
161 Pennsylvania NASA COOLR
50 Pennsylvania PennDOT District 12
55 West Virginia and Eastern Ohio NASA COOLR
121 New Jersey USGS Landslide Inventory

USGS Landslide Inventory and NASA COOLR catalog offer different formats of data to
download as file geodatabase (.gdb), shapefiles (.shp), or comma-separated values (.csv).
PennDOT District 12 provides a slide database in Excel format. The platforms for storage are the
same as the database for spatial analysis, which are ArcGIS, Google Earth, and Excel tabular

formats. The compiled database in ArcGIS, Google Earth, and Excel is shown in Figures 11-13.

Figure 11. Spatiotemporal landslide database in ArcGIS.
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In Figure 11, red dots represent landslide data from the NASA COOLR catalog, green dots
represent landslide data from USGS Landslide Inventory, and yellow dots represent landslides
provided by PennDOT District 12. Each landslide point in the database contains detailed
information about the location of the landslide with the XY coordinates of longitude and latitude,

identified event date, data source, and other pertinent geotechnical information.
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Figure 12. Spatiotemporal landslide database in Google Earth: (a) display of data points;

(b) information attached to a data point.
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Figure 12(a) shows the landslide spatiotemporal database transferred to Google Earth. The
marks with different colors on the map represent landslide events from different sources: red dots
represent landslide data from the NASA COOLR catalog, blue dots represent landslide data from
USGS Landslide Inventory, and yellow dots represent landslides provided by PennDOT District
12. The red lines on the map show the boundaries of different counties of Pennsylvania, providing
a clear relative geographic location of landslides. For each landslide, the relevant information is

attached and can be displayed when the mark is clicked, as shown in Figure 12(b).
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Figure 13. Spatiotemporal landslide database in Excel format.

The Excel tabular database for spatiotemporal analysis is shown in Figure 13. In this database,
landslide location, event date, data source, and pertinent geotechnical variables are recorded in

rows and columns.

Every landslide event also includes a pre-event image and a post-event image, together with
the event date and longitude and latitude coordinates of the event location. The satellite images of
landslides are from Google Earth with a Landsat database map. The NASA/USGS Landsat
Program provides the longest continuous space-based record of Earth’s land in existence. Landsat
data provides information essential for making informed decisions about Earth’s resources and
environment (Tucker et al. 2004). With the function of historical images in Google Earth, pre-
event and post-event images of landslides are determined manually based on their location and
date. An example of event images is shown in Figure 14. The example landslide event date is
09/25/2018; the longitude and latitude coordinates of the event location are (-80.05269922,
40.53872962). The pre-event image was recorded on 04/2014 while the post-event image was
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recorded on 09/2019. The images show that the landslide caused damage to the road. It should be
noted that some landslides are not evident in images, and there are some cases where event images
could not be obtained for landslides. It is because those historical images were obtained only at
certain points in time, during which small landslides may have been repaired completely. In
addition, the landslide location has an uncertainty of up to several kilometers; hence, it is
challenging to locate every landslide accurately from Google Earth; for those landslides with an
old event date, there was no satellite serving to get clear photography of the earth at the time. Links
to these images are provided in the Excel database, and these links would work as long as the event

images are stored in the same folder as the Excel database.

#123 Pre-event image

#123 Post-event image
w1

(b)
Figure 14. Example of satellite images of landslide (#123) in the database for

spatiotemporal analysis: (a) pre-event image; (b) post-event image.
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3 Collection of Pertinent Information

Pertinent information regarding the causative factors for the landslides is collected. The
causative factors are related to geology, geomorphology, hydrology, land cover, seismicity,
manmade activities, etc. (Raghuvanshi et al. 2014; Anbalagan 1992). ML algorithms are used to
find underlying relationships between landslide occurrence and these causative factors. However,
determining the exact number and type of causative factors to be incorporated in ML models is
one of the most critical and challenging tasks in LSM, and many researchers differ on what
causative factors should be included in LSM (Kavzoglu et al. 2019). Thus, there is no universally
agreed selection of landslide causative factors; in general, these factors can be broadly categorized

in Table 2.

Table 2. Category of landslide causative factors (from Moziihrii et al. 2022)

Type of factors Causative factors

Topography Slope, aspect, elevation, plan curvature, profile curvature, and
sediment transport index
Hydrology Rainfall, solar radiation, stream power index, topographic

wetness index (TWI), distance to rivers, and density of the river

Geological Lithology, distance to faults, and density of fault
Land use/cover Land Use and Land Cover (LULC) and normalized difference
vegetation index (NDVI)
Man-made Distance to roads and road density

In this study, fourteen landslide causative factors are chosen for LSM, as Table 3 shows. The
values of these causative factors can be downloaded as GeoTIFF files from Google Earth Engine.
Google Earth Engine combines a multi-petabyte catalog of satellite imagery and geospatial
datasets with planetary-scale analysis capabilities. GeoTIFF is based on the TIFF format and is
used as an interchange format for georeferenced raster imagery. GeoTIFF is widely used in NASA

earth science data systems.
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Table 3. Causative factors used for landslide susceptibility mapping.

Number Causative factor Number Causative factor
1 Elevation 8 Stream power index (SPI)
Normalized difference
2 Slope 9 o
vegetation index (NDVI)
3 Aspect 10 Sand content

Multi-scale topographic
4 11 Clay content
position index (mTPI)

5 Profile curvature 12 Bulk density

6 Plan curvature 13 Texture classification

Topographic wetness index ' .
7 14 Field capacity
(TWI)

Based on various geospatial datasets in Google Earth Engine, the data of these causative factors
can be obtained using codes in the Google Earth Engine code editor. The interface of the Google

Earth Engine code editor is shown in Figure 15.

Google EarthEngine @ search places and datasets. cexiongiass &

D) Docs | Assets | K8 = 3 B | rsvector BT Tesks
Filter scripts. m Use print (... ) to write to this console.
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Welcone to Earth Engine!
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le: ut how to use Earth Engine,
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L2209 - INEGI | 500km it Tems of Use

Figure 15. Interface of Google Earth Engine code editor.
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The most fundamental terrain data are the elevation, slope, and aspect data, which are extracted
from the NASA Digital Elevation Models (NASADEM). A Digital Elevation Model (DEM) is
arepresentation of elevation data to represent the bare ground topographic surface of the Earth,
excluding trees, buildings, and any other surface objects. Elevation can be obtained directly from
the DEM dataset, while slope and aspect can be calculated based on DEM. NASADEM is a
modernization of the DEM and associated products generated from the Shuttle Radar Topography
Mission (SRTM) data and has an effective ground resolution of 30 m. Hence, the resolution of the
factors derived from DEM is 30 m. The description of NASADEM from Google Earth Engine is

shown in Figure 16.

The elevation, slope, and aspect raster data were downloaded for entire Pennsylvania, covering
all landslide data points in the databases for spatial and spatiotemporal analyses. Since the area is
too large to make a one-time download, the area was divided into three parts for data download
separately, and all landslide data points are covered by the three segments. For example, the
elevation data for the whole area is shown in Figure 17. For demonstration purposes, the
contributing data of the landslide dataset for spatial analysis is shown next (within eight counties
in southwestern Pennsylvania); the corresponding data of the landslide dataset for spatiotemporal
analysis is similar and hence not shown herein. The raster data of elevation, slope, and aspect in

the study area for spatial analysis are shown in Figures 18, 19, and 20, respectively.

Earth Engine Data Catalog

Home View all datasets Browse by tags Landsat MODIS Sentinel API Docs

NASADEM: NASA NASADEM Digital Elevation 30m @& -

L P =

Dataset Availability
2000-02-11T00:00:00Z-2000-02-22T00:00:00
Dataset Provider
NASA / USGS / JPL-Caltech

Earth Engine Snippet

ee.Image("NASA/NASADEM_HGT/001") [
Tags

dem  elevation  geophysical  nasa  stm  topography  usgs  nasadem

Description Bands Terms of Use Citations

Figure 16. Dataset of NASADEM in Google Earth Engine.
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Figure 17. Elevation raster data for the whole study area.

Elevation
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Figure 18. Elevation raster data for the study area for spatial analysis.
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Slope

Value (deg)

l 65.8083
Lo

Aspect

Value (deg)
359.11

e

Figure 20. Aspect raster data for the study area for spatial analysis.

Topographic Position Index (mTPI) is relative elevation data and is calculated using elevation
data for each location subtracted by the mean elevation within a neighborhood; hence, mTPI can
distinguish ridges from valley forms. mTPI in the study area of the landslide database for spatial

analysis is shown in Figure 21.
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Figure 21. mTPI raster data for the study area for spatial analysis.

Profile and plan curvatures are calculated from the bathymetry surface for each raster cell using
the ArcGIS Spatial Analyst "Curvature" Tool based on DEM data. They reflect the rate of change
of curvature in different directions. The profile curvature is parallel to the direction of the
maximum slope, while the plan curvature is perpendicular to the direction of the maximum slope.
As important topographical factors, they contribute to the occurrence of landslides. Profile and
plan curvatures in the study area for spatial analysis are shown in Figure 22 and Figure 23,

respectively.

Profile curvature

Value
™ 10.8889

Wl -9.68723

Figure 22. Profile curvature raster data for the study area for spatial analysis.
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Figure 23. Plan curvature raster data for the study area for spatial analysis.

Topographic Wetness Index (TWI) is a significant causative factor that measures the degree
of water accumulation at a location. Stream Power Index (SPI) is a measure of the erosive power
of flowing water. They are calculated based on flow accumulation and the slope angle of each
location. Flow accumulation is calculated using ArcGIS Spatial Analyst "Hydrology" Tool based
on DEM data. TWI and SPI in the study area for spatial analysis are shown in Figures 24 and 25,

respectively.

TWI

Value
‘:‘.':ﬂ 26.5093

2.7773

] L ———

Figure 24. TWI raster data for the study area for spatial analysis.
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Figure 25. SPI raster data for the study area for spatial analysis.

Normalized Difference Vegetation Index (NDVI) is an index that researchers commonly use
in remote sensing as it quantifies vegetation by measuring the difference between near-infrared
(which vegetation strongly reflects) and red light (which vegetation absorbs). NDVI data were
downloaded through Landsat 8 Collection 1 Tier 1 dataset, as shown in Figure 26. These
composites are created from all the scenes in each 8-day period, beginning from the first day of
the year and continuing to the 360th day of the year. The average NDVI value was calculated and
downloaded through the code editor. NDVTI in the study area for spatial analysis is shown in Figure

27.

Earth Engine Data Catalog

Home View all datasets Browse by tags Landsat MODIS Sentinel API Docs

Landsat 8 Collection 1Tier 18-Day NDVI Composite QO -

Dataset Availability

2013-04-07T00:00:00Z-2022-01-01T00:00:00

Dataset Provider
Google

Earth Engine Snippet
ee.ImageCollection("LANDSAT/LC@8/CO1/T1_8DAY_NDVI") [

Tags

Figure 26. Dataset of Landsat 8 Collection 1 Tier 1 8-Day NDVI Composite in Google
Earth Engine.
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Figure 27. NDVI raster data for the study area for spatial analysis.

Sand content, clay content, soil bulk density, soil texture classification, and field capacity
represent soil properties. Soil property data was obtained from the dataset of OpenLandMap in
Google Earth Engine, as shown in Figure 28, and they have a spatial resolution of 250 m. The band
downloaded in this study is b100, which represents the soil properties at 100-cm depth. Sand and
clay contents and the bulk density of soil play important roles in the occurrence of landslides by
affecting the slope weight and shear strength. Soil texture is a classification instrument used to
determine soil classes based on their physical texture. The United States Department of Agriculture
(USDA) soil taxonomy uses 12 textural classes to classify soil, considering the percentages of sand,
silt, and clay in the soil (Figure 29). Since soil texture classification is a categorical variable, there
are integer values from 1 to 12 in OpenLandMap, with each value representing a classification of
soil as shown in Table 4. Field capacity is the amount of water content held in the soil after excess
water has drained away and the rate of downward movement has decreased; the field capacity used
in this study is soil water content for 33 kPa suctions at 100-cm depth. The raster data of soil

properties in the study area are shown in Figures 30 through 34.
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Earth Engine Data Catalog Earth Engine Data Catalog

Home  Viewalldatasets  Browsebytags  Landsat  MODIS  Sentinel  APIDocs

Home  Viewalldatasets  Browsebytags  landsst  MODIS  Sentinel  APIDocs

OpenlLandMap Sand Content o - OpenLandMap Clay Content o -

Dataset Availability

Dataset Availability
1950-01-01T00:00:00Z-2018-01-01T00:00:00
1950-01-01700:00:00Z-2018-01-01700:00:00
Dataset Provider
Dataset Provider
EnvirometriX Ltd
EnvirometriX Ltd
Earth Engine Snippet
Earth Engine Snippet
ee.Image("OpenLandMap/SOL/SOL_SAND-WFRACTION_USDA-3A1ATA_M/ve2") (&
Tags ee.Image("OpenLandMap/SOL/SOL_CLAY-WFRACTION_USDA-3A1ATA_M/vB2") (4
Tags
envirometrix opengeohub openlandmap sand soil usda
clay envirometrix. opengeohub openlandmap soil usda
Earth Engine Data Catalog Earth Engine Data Catalog

Home  Viewalldatasets  Browsebytags  Landsat ~ MODIS  Sentinel  APIDocs

Home  Viewalldatasets  Browsebytags  landsat ~ MODIS  Sentinel  APIDocs

OpenLandMap Soil Bulk Density OpenLandMap Soil Texture Class (USDA System) O -

Dataset Availability Dataset Availability

1950-01-017T00:00:00Z-2018-01-01T00:00:00 1950-01-01T00:00:00Z-2018-01-01T00:00:00

Dataset Provider Dataset Provider

{ EnvirometriX Ltd EnvirometriX Ltd
B Ty,

o Al 5 Earth Engine Snippet Earth Engine Snippet
m, = ee.Image( “OpenLandMap/SOL/SOL_BULKDENS-FINEEARTH_USDA-4ATH_M/v82") ce. Inage (“OpenLandMap/SOL/SOL_TEXTURE-CLASS_USDA-TT_N/ve2") (4
N @
Tags
Tags
envirometiix  opengeohub  openlandmap  soil  usda texture
density  envirometrix  opengechub openlendmap sl bulk

Earth Engine Data Catalog

Home  Viewalldatasets  Browsebytags  Landsat  MODIS  Sentinel  APIDoc

OpenlLandMap Soil Water Content at 33kPa (Field Capacity) O -

Dataset Availability
1950-01-01T00:00:002-2018-01-01T00:00:00
Dataset Provider
EnvirometriX Ltd
Earth Engine Snippet
ee. Inage (“OpenLandHap/SOL/SOL_WATERCONTENT-33KPA_USDA-4B1C_M/v81") [

Tags

envirometrix  opengeohub  openlandmap  soil  watercontent

Figure 28. Datasets of OpenLandMap in Google Earth Engine.
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Figure 29. USDA soil textural classification triangle.

Table 4. Soil texture value and soil classification.

Soil texture value in

OpenLandMap Soil classification

Clay
Silty clay
Sandy clay
Clay loam
Silty clay loam
Sandy clay loam
Loam
Silt loam
Sandy loam
Silt
Loamy sand
Sand

(S —
— 2 0000 h W~

[a—
(\]

26



Sand content

Value (%)

.81
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Clay content

Value (%)

.51
N

Figure 31. Clay content raster data for the study area for spatial analysis.
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Figure 33. Soil texture classification raster data for the study area for spatial analysis.
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Field capacity

Value (%)
38

Figure 34. Field capacity raster data for the study area for spatial analysis.

The values of these soil properties are based on ML predictions from a global compilation of
soil profiles and samples. OpenLandMap uses a compilation of published point data from various
national and international soil point data providers to develop ML models for mapping soil

properties and classes. The most important sources of training points include:

e USDA National Cooperative Soil Characterization Database,

e Africa Soil Profiles Database,

e LUCAS Soil database,

e Repositdrio Brasileiro Livre para Dados Abertos do Solo (FEBR),

e Sistema de Informacién de Suelos de Latinoamérica y el Caribe (SISLAC),

e The Northern Circumpolar Soil Carbon Database (NCSCD),

e Dokuchaev Soil Science Institute / Ministry of Agriculture of Russia (soil profiles for
Russia),

e  WHRC global mangrove soil carbon dataset,

e Local data sets such as Silva et al. (2019).

Additional points, if not available through these databases, have also been imported from the
WoSIS Soil Profile Database (Batjes et al. 2017). Predictions are based on 3D ML ensemble
models estimated using the SuperLearner and Caret packages (Hengl and MacMillan 2019). Data

import, overlay, and model fitting to produce predictions of soil properties and classes are
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explained by Hengl and MacMillan (2019). The general workflow for the generation of soil

properties and classes using ML is shown in Figure 35.

soil samples soil profiles
(2D) single depth (3D) multiple depth
Training points soil layers  soil horizons primary soil properties  derived soil properties
° ° o o organic carbon content
nurnglric 00 ° o, C bulk density soil organic carbon stock
sol e o o sand, silt, clay content  gyailable water ca
i = pacity
properties o° ° o0 ° o soil pH
° o o coarse fragments
o o o o
o ) o
° Predictive Soil Mapping
Literature Machine L ina Alorith
Online databases Initial data mining —J» achine Learning Algorithms

. - Basic: ranger, xgboost, ...
Soil legacy data - Extended: caret, mlr,

(]
\ o SuperLearner, ...
b ° e © o ° e

soil ° ° 8
classes ° USDA great groups texture class

Training points primary soil classes derived soil classes

Figure 35. General workflow for generation of soil properties and classes using ML (from
Hengl and MacMillan 2019).

In the present study, these causative factors of soil properties were downloaded or generated
through Google Earth Engine and ArcGIS, and they were prepared as different raster layers in
ArcGIS. The values of every factor are extracted for each landslide point in the landslide databases
for spatial and spatiotemporal analyses. They are recorded as pertinent information together with
the location, event date, and other information to develop the final landslide database in different
platforms, as shown in Figures 8 through 13 in Section 2. It is noted that some landslide events
have missing values of soil properties in the databases (almost all the values of soil properties for
those cases are 0). Those missing values are null values based on ML prediction by OpenLandMap;

hence, they will not be used as input in the ML of this study.

In addition to these fourteen contributing factors, rainfall data was also collected for the
database to conduct spatiotemporal analysis. Daily rainfall amount data was downloaded from
NASA Daily Surface Weather and Climatological Summaries (Daymet). Daymet provides long-
term, continuous, gridded estimates of daily weather and climatology variables by interpolating

and extrapolating ground-based observations through statistical modeling techniques. Through the
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Single Pixel Extraction Tool of Daymet, daily rainfall amount data before each landslide event can
be downloaded using the event date and longitude and latitude coordinates of the landslide location

as input. An example of downloaded rainfall data is shown in Figure 36.

Map  Satellite

1%
= &

156 Latitude: 39.9872641261111 Longitude: -80.4591496581265

157 X &Y on Lambert Conformal Conic: 1579481.6 -80415.63

158 Tile: 11570

Elevation: 384 meters

All years; all variables; Daymet Software Version 4.0

160 How to cite: Thernton; M.M.; R. Shrestha; Y. Wei; P.E. Thornton; 5. Kao; and B.E. Wilson. 2020. Dayr

year yday prep (mm/day)
2018 92 3.45
163 2018 93 35.1
2018 9 0
165 2018 95 0
2018 9 5.3
166 2018 o7 0
167 2018 98 0
168 2018 99 0.75
2018 100 0
2018 101 0
170 2018 102 0
171 2018 103 0
0
1

172 2018 104
2018 105 55.7

peeeeElrreeeeeeee@@® !
z

Figure 36. An example of rainfall amount data downloaded from Daymet.

4 Landslide Susceptibility Assessment

Landslide susceptibility is a measurement of the occurrence probability of landslides under
certain geo-environmental conditions. Landslide susceptibility assessment is considered an
important and effective approach for assessing landslide risk. The methods and techniques of
landslide susceptibility mapping as well as the comparisons between them, have been widely
studied (Yesilnacar and Topal 2005; Chacén et al. 2006; Lee et al. 2007; Yilmaz 2010; Akgun
2012; Youssef 2015; Wang et al. 2016).

The methods of landslide susceptibility assessment can be broadly categorized into three
fundamental types: knowledge-guided methods, data-driven methods, and physics-based methods.
Knowledge-guided methods are qualitative methods by weighting and ranking related landslide
causative factors based on the knowledge of experts. Data-driven methods evaluate landslide risk
by analyzing quantitative relationships between related geo-environmental characteristics and
landslide occurrence. Physics-based methods predict landslide susceptibility based on the
mechanisms and processes that control slope failures. All three types of methods have advantages

and drawbacks. For knowledge-guided methods, subjectivity would be inevitably involved, while
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physics-based methods are usually only effective for specific conditions. Generally, large scales
of landslide susceptibility mapping involve more complex variables and larger amounts of data.
Since data-driven methods benefit from ample and high-quality data, they are applied for landslide
susceptibility mapping in the present study.

Data-driven methods broadly include statistical methods and ML methods. Statistical methods
commonly used include the frequency ratio method (Lee and Talib 2005; Kannan et al. 2013), the
weight of evidence method (Lee and Choi 2004; Thiery et al. 2007), the fuzzy logic method
(Ilanloo 2011), information value method (Sarkar et al. 2013), and geographic information system
(GIS) matrix method (Irigaray et al. 2007). ML methods commonly used include logistic
regression (Ayalew and Yamagishi 2005; Wang et al. 2013), artificial neural network (Ermini et
al. 2005; Tsangaratos and Benardos 2014), support vector machine (Yao et al. 2008), and random
forest (Youssef et al. 2016). Among statistical methods, the frequency ratio method is one of the
most popular and can outperform other methods, as shown in several case studies (Guo et al. 2015;
Ding et al. 2016). In the present study, the frequency ratio method and several ML methods are
applied to predict landslide susceptibility in southwestern regions of Pennsylvania, and an LSM is

generated in the ArcGIS environment to serve as a tool for landslide risk assessment.

5 Frequency Ratio Method for LSM

To predict landslides, it is generally assumed that landslide occurrence is determined by related
causative factors, and future landslides will occur under similar conditions. On this basis, the
frequency ratio method analyzes the quantitative relationships between landslide inventory and
related causative factors using probabilistic approaches. In the present study, the frequency ratio
method is used to evaluate the level of correlation between the distribution of landslides and
causative factors in the study area. The database for spatial analysis is used for the frequency ratio
method, which contains 4,543 landslides in the format of the polygon as shown in Figure 7. Since
the frequency ratio method was used to generate a preliminary LSM, only eight causative factors
were selected for the analysis, which are shown in Table 5. As this study progressed, six additional
factors were considered, and fourteen factors in total were included in ML methods to generate the

final LSM, which is presented in Section 6.
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Table S. Causative factors used in frequency ratio method.

Number Causative factor Number Causative factor

1 Elevation 5 Stream power index (SPI)

Normalized difference

2 Slope 6 o
vegetation index (NDVI)
3 Aspect 7 Sand content
Topographic wetness index
4 8 Clay content
(TWI)

5.1 Framework of frequency ratio method

In the case of landslide occurrence,the landslide-occurrence event is denoted by L, and a given
factor’s attribute is denoted by F. Given that the factor F'is subdivided into # classes, the frequency

ratio (FR) for the ith class of factor F (Fi) can be written as:

_ P(L;) _the frequency of landslides in the F; arca
T P(F) the frequency of the F; area

_ the area of landslides in the F; area / the area of landslides in the study area

the area of the F; area / the area of the study area

Eq. (1)

A frequency ratio FR; larger than 1 indicates that the frequency of landslides in the Fi area is larger
than the frequency of the Fiarea and further indicates that the ith class of factor F has a positive
contribution to landslide occurrence. On the contrary, a frequency ratio FR;smaller than 1 indicates

that the ith class of factor /' doesn’t favor landslide occurrence.
To better demonstrate the statistical meaning of frequency ratio, Eq. (1) can be transformed as:

the area of landslides in the F; area / the area of the F; area

FR=
the area of landslides in the study area / the area of the study area

i

_ the probability of landslides in the F; area  P(L|F})
the probability of landslides in the study area ~ P(L)

Eq. (2)
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Since the probability of landslides in the study area P(L) is predetermined by the landslide
inventory, the frequency ratio (FR;) is determined by the probability of landslides in the F; area
P(L|F;), which is the conditional probability of L given Fi. Hence, a higher conditional probability
P(L|F;) means that there is a higher probability of landslides occurrence in the ith class of factor
F (F?), and that would be reflected with a higher frequency ratio (FR;). When the frequency ratio
value is greater than one, it indicates a strong correlation between the factor’s class and landslide

occurrence, while a value smaller than one indicates a weak correlation.

Take slope angle, one of the causative factors, as an example to demonstrate the calculation
process of the frequency ratio. As Figure 37 shows, the first step after preparation and rasterization
of data is to classify slope map into five classes with equal intervals in the study area. Eq. (1) or

Eq. (2) can then be used to calculate the frequency ratio (FR) for each class of the slope map.

Considering different landslide causative factors F¥) (j=1, 2, ..., m), their frequency ratio with
n class FR (i=1,2, ...,n;j=1, 2, ..., m) can be calculated according to Eq. (2). That means if the
class of F¥) at a particular location is F;’, the frequency ratio of this factor at this location will be
FR¥. Therefore, a landslide susceptibility index (LSI) was introduced for any given location,
which is the summation of the frequency ratios of different causative factors at this location (Lee

and Pradhan 2007):

LSI= z FRY Eq. (3)
=)

A high LSI value indicates a high risk of landslide occurrence at the location. Hence, LSI can also
be represented as the landslide hazard index (LHI) in the study of landslide susceptibility mapping
(Pradhan and Lee 2009). To obtain the final landslide susceptibility map, the LSI map is then
reclassified into several classes with equal intervals to distinguish the areas with different landslide

susceptibility.
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“Slope angle” map preparation and rasterization

-

Classify “slope angle” into five classes with equal intervals in the study area

Class 1 (0°-12°)
Class 2 (12°-24°)
Slope angle (0°-60°) — Class 3 (24°-36°)
Class 4 (36°-48°)
Class 5 (48°-60°)

U

Calculate the frequency ratio for each Class of “slope angle” (e.g., Class 2)

A A VN

A
[A}AA AAA
AA A
A A
A
A A\AAA
A A A
A A A A/AA

C] Study area D F, area (i.e., Slope 12°-24° area)

A Landslide events @ Landslide events in the F', area

_ the area of landslides in the F', area /the area of landslides in the study area

7 the area of the F', area / the area of the study area (Eq. 1)
Or
the area of landslides in the F', area / the area of the F', area
Fr (Eq.2)

a the area of landslides in the study area / the area of the study area

Figure 37. Calculation process of the frequency ratio for slope angle.
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In the present study, there are six essential steps in applying the frequency ratio method, which

are shown in Table 6.

Table 6. Steps in applying the frequency ratio method.

Steps Description
1 Preparation of landslide inventory map and landslide causative factors map.
2 Rasterization of all maps including landslide inventory and causative factors.
3 Classifying all causative factor maps.
4 Calculating the frequency ratio of each causative factor.
5 Summing up all frequency ratio maps to obtain the landslide susceptibility index.

Reclassifying the landslide susceptibility index into different classes to generate

landslide susceptibility map.

The framework of the frequency ratio method applied in this study is shown in Figure 38.

Landslide susceptibility
mapping task
Spatial Database < Study area .
(USGS landslide inventory) determination *| Google Earth Engine
i Rasterize maps
Reshape as polygon Same projection and
Rasterize polygons pixel size
|
v v v
[ Blevation | ['slope | [Aspect | | Sand Cly | [ twr |{spr |[NDvI |
content content
v v
Classify all factors into five classes
2
N,il1): Landslide pixels in each class of the factor
e Npix(l)/Npix(z) N,i(2): Landslide pixels in the study area
) Npix(3)/ ) Npix(4) N,(3): pixels of each class of the factor
N,i(4): pixels of the study area
. o Reclassify LS~ ——— l
Landslide Susceptlbl]lty Map < ]fy LSI |« [ Raster Calculator and Excel works |

mto five classes L —_1 L

Figure 38. Flowchart of the frequency ratio method applied in this study.
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5.2 Results of the frequency ratio method

Since landslide polygons and all causative factors are rasterized in ArcGIS and the size of
every pixel is 30 mx30 m, the area of landslides and factors is represented by the number of pixels,
which can be calculated using tools readily available in ArcGIS. To calculate the frequency ratio,
an Excel table (see Table 7) was constructed for each landslide causative factor, and Eq. (1) was
used for the calculation of the frequency ratio. First, the area ratios for landslide occurrence within
each factor’s class to the total landslide area in the whole study area were calculated, then the area
ratio for each class of factors to the total study area was calculated. Finally, the frequency ratios
for each class of factors were calculated by dividing the landslide occurrence ratio by the factors’

class ratio.

Table 7. Frequency ratios of factors to landslide occurrences.

Factor Class Class pixels Clas(s(;: )ixels L'Ei:isde ;iré(llssl(i(ie) FR
193.0 ~334.8 m 4411804 25.73 10048 30.68 1.19
334.8 ~476.6 m 11415708 66.58 22667 69.21 1.04
Elevation | 476.6 ~618.4m 1082468 6.31 32 0.10 0.02
618.4 ~760.2 m 137557 0.80 3 0.01 0.01

760.2 ~902.0 m 98537 0.57 0 0 0
0~4.65° 5090411 29.69 1497 4.57 0.15
4.65 ~8.77° 5591795 32.61 4753 14.51 0.45
Slope 8.77~13.68° 3971571 23.16 10899 33.28 1.44
13.68 ~20.13° 1976044 11.52 11195 34.18 2.97
20.13 ~ 65.81° 516253 3.01 4406 13.45 4.47
0~65° 3227426 18.82 7243 22.12 1.17
Aspect 65 ~ 138° 3458279 20.17 8113 24.77 1.23
138 ~210° 3505869 20.45 5024 15.34 0.75
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210 ~280° 3646002 21.26 5576 17.03 0.80
280 ~ 360° 3308498 19.30 6794 20.75 1.08
0~162% 157620 0.92 109 0.33 0.36
16.2~32.4% 6967438 40.63 22331 68.30 1.68
Sand
32.4~48.6 % 9908434 57.79 10226 31.28 0.54
content
48.6 ~64.8 % 112599 0.66 30 0.09 0.14
64.8 ~81 % 534 0 0 0 0
0~10.2% 155445 091 106 0.32 0.36
10.2~20.4% 2296563 13.39 2027 6.20 0.46
Clay
20.4 ~30.6 % 12239139 71.38 16859 51.56 0.72
content
30.6 ~40.8 % 2455116 14.32 13701 41.90 2.93
40.8 ~51 % 362 0.002 3 0.01 4.35
2.78 ~6.22 7043427 41.08 16862 51.49 1.25
6.22 ~7.90 6569230 38.31 11465 35.01 0.91
TWI 7.90 ~10.50 2369547 13.82 3257 9.95 0.72
10.50 ~ 14.13 902037 5.26 967 2.95 0.56
14.13 ~26.51 261833 1.53 199 0.61 0.40
0~3.9e7 5265707 30.75 5289 16.16 0.53
3.9 ~7.8e7 1623307 948 1015 3.10 0.33
SPI 7.8 ~11.7¢7 9848630 57.51 25818 78.86 1.37
11.7 ~ 15.6e7 368886 2.15 612 1.87 0.87
15.6 ~ 19.5¢7 17892 0.10 3 0.01 0.09
-1.28 ~-0.86 157152 0.92 30 0.09 0.10
NDVI -0.86 ~-0.44 745431 4.35 521 1.59 0.37
-0.44 ~-0.02 3679572 21.46 6561 20.02 0.93
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-0.02 ~ 0.40 10564152 61.61 21812 66.55 1.08

0.40 ~0.82 2000203 11.67 3853 11.76 1.01

Table 7 shows the relationships between eight causative factors and landslide occurrence.
According to the statistical meaning of frequency ratio, a ratio larger than 1 suggests a strong
relationship between the factor and landslide occurrence. For example, for slope angles below
8.77°, the frequency ratios are smaller than 1, indicating a low probability of landslide occurrence;
while the frequency ratios of slopes larger than 8.77° are larger than 1, indicating a high probability
of landslide. After calculating frequency ratios for all causative factors, LSI was calculated using
Eq. (3) to get a summation of each factor’s frequency ratio. The LSI values were then classified

into different levels of landslide susceptibility zones using equal breaks in the ArcGIS tool.

The landslide susceptibility map using frequency ratios for the selected causative factors is
generated in ArcGIS, as shown in Figure 39. The susceptibility map is classified into five classes
based on LSI with equal intervals, representing very low, low, moderate, high, and very high risks
corresponding to different landslide occurrence probabilities. The correlation between the

susceptibility classes and the probability of landslide occurrence is shown in Table 8.

Table 8. Correlation between susceptibility classes and probability of landslide.

Susceptibility classes Probability of landslide
Very low 0% - 20%
Low 20% - 40%
Moderate 40% - 60%
High 60% - 80%
Very high 80% - 100%
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Figure 39. LSM using the frequency ratio method.

It is shown that the susceptibility map derived using the frequency ratio method corresponds
to the location of actual landslide occurrences very well. The red zones, which represent a very
high risk of landslide occurrence, follow a similar distribution as the recorded landslides in the
study area. Through frequency ratio analysis, a preliminary landslide susceptibility map was
created, and the level of correlations between the selected causative factors and landslide
occurrence was verified. The preliminary susceptibility map provides a basis for landslide
susceptibility mapping using ML methods, the power of which has been shown in many studies in

recent years.

6 ML Methods for LSM

In recent years, the big data era has brought enormous benefits to society and different sectors.
Big data refers to the vast amount of data that can be obtained or generated with advanced
techniques. ML techniques, as an important subfield of Al, have achieved considerable success in
various domains, from computer science to commercial fields. With the power of different

mathematical algorithms and statistical techniques, ML can extract information from tremendous
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data and imitate the way that humans learn to deal with different tasks. In addition to traditional
fields related to data and computer systems, ML is becoming more significant in the fields of

natural science and engineering.

In geotechnical engineering, the technical explosion of ML has promoted its application to
landslide susceptibility mapping as well. For example, Reichenbach et al. (2018) reviewed
published works on various aspects of landslide susceptibility mapping with ML; based on the
comparisons of modeling approaches and model evaluation criteria, they provided
recommendations for the preparation, selection, and evaluation of ML models for landslide
susceptibility mapping. Merghadi et al. (2020) summarized the popular ML techniques available
for landslide susceptibility mapping and highlighted the advantages and disadvantages of each
model with a case study in Algeria. Naemitabar et al. (2021) analyzed the selection of effective
landslide causative factors and compared four ML algorithms for landslide susceptibility mapping.
Moziihrii et al. (2022) conducted a comprehensive literature survey and showed the current trend
of landslide susceptibility mapping using ML techniques. The survey analyzed published works,
including the studies of ML models, landslide causative factors, study location, datasets,

evaluation methods, and model performance.

Previous studies indicate that ML-based methods are effective for assessing complex
relationships between landslide occurrence and causative factors. Typically, the capability to deal
with vast amounts of data makes ML techniques suitable for the tasks associated with regional

landslide susceptibility assessment compared to other physical methods.

6.1 ML algorithms

ML algorithms are mathematical models that allow people to explore, analyze, and find
meaning in complex data sets. Each algorithm is implemented as a set of unambiguous step-by-
step instructions that a program can follow to achieve a particular goal. For ML tasks, the general
goal is to discover or establish patterns that people can use to make predictions on quantities or
categories. Hence, the two most fundamental and important types of algorithms in ML are
regression and classification. Regression algorithms predict a continuous value based on the input
data. For example, if the target variable that needs to be predicted is a quantity like income, scores,

height, or weight, regression models can be very effective. Classification algorithms predict
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discrete class labels based on the input data. For example, image recognition systems can
automatically classify different items in one image. Email spam detection systems can classify an
email as spam or non-spam based on the content of the mail. Given a person's symptoms, an ML-
based disease diagnosis can classify the person as suffering from a disease or not. For regression
and classification algorithms, there are many conventional and advanced algorithms born with the

development of computer technology.

In the present study, landslide prediction is treated as a binary classification problem. The
objective is to predict whether a landslide will occur in a specific location based on input data of
landslide causative factors. Four ML models are used in the study, including Logistic Regression
(LR), Support Vector Machine (SVM), Random Forest (RF), and Gradient Boosting Machines
(GBM). These models are commonly used in geotechnical fields and were chosen due to their
applicability, small biases, and reasonable results in previous studies. For example, Ayalew et al.
(2005) applied LR to predict landslide occurrence and distribution in the Kakuda-Yahiko
mountains in central Japan. Ballabio et al. (2012) analyzed the application of SVM to landslide
susceptibility mapping in the Staffora river basin in Italy. Zhang et al. (2023) compared the
performance of RF and GBM applied to landslide susceptibility mapping in Fengjie County in

southwestern China.

LR accomplishes binary classification tasks by predicting the probability of an event; it
analyzes the relationship between independent variables and classifies data into binary classes by
using a sigmoid function to map probabilities. SVM is based on the principle that minimizes errors
associated with the training dataset and maximizes the generalization of the model (Vapnik 1995).
The main idea behind SVM is to find a hyperplane that maximally separates the different classes
in the training data. RF is an ensemble learning algorithm based on the decision tree (DT)
algorithm. It solves the problem by collecting the results from different DT models built randomly.
The algorithm selects a feature subset of examples to develop different DTs during model training.
After the creation of DTs, each DT makes a separate prediction, and RF considers the mean of
those separate predictions to make the final prediction (Ho 1995). GBM is also one of the ensemble
learning algorithms where multiple weak models are created first and then are combined to yield
better performance (Natekin and Knoll 2013). Boosting works as it reduces error with each

additional weak learner into a strong learner sequentially to correct its predecessor. The above four
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models are widely used for classification problems. According to the different mechanisms behind
ML algorithms, the performance of an ML model would vary when applied to different datasets
and tasks. Therefore, no model is always the best. In the present study, all four models are

established, and the performance is compared based on different evaluation methods.

6.2 Landslide database for ML

The database compiled for ML contains 4,543 landslides from USGS Topography sheets.
Different than the eight causative factors consisered in the frequency ratio method, fourteen
landslide causative factors (see Table 3) are considered in building the ML model for LSM. To
reduce the bias caused by a high concentration of landslides in the southwestern region of the study
area, 3000 landslides in the study area are randomly chosen as the database for ML. For binary
classification problems, ML algorithms require both positive and negative samples with features
so that the model can be trained to distinguish the pattern of features for different classes. Therefore,
3000 non-landslides with the same number as landslides are sampled in the study area, as shown
in Figure 40. Non-landslides are randomly sampled in the study area outside circular buffers set
around landslides. The buffer ensures that non-landslide will not be sampled within 500 m around

a landslide to avoid the possibility of coinciding with landslide locations in sampling.

2

® Landslides
© Non-landslides

Figure 40. Landslide and non-landslide samples in the study area.
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Positive and negative samples are usually represented by labels 1 and 0, respectively, for ML
tasks; hence, the database compiled for landslide classification contains 3000 positive landslide
samples with a label of 1 and 3000 non-landslide samples with a label of 0. Both positive and
negative samples are associated with the fourteen landslide causative factors. A portion of the

database is shown in Figure 41.

TWI SPI Plan_cwrvature  Profile_cwrvature  Aspect  Clay_content mTPI  Elevation Sand_content Slope Soil_texture  Field_capacity = Bulk_density NDVI label
- - - degree % m m % degree - % 10 x kg'rrf -

4.99238 121911 0.045045 1.37837%9 100.107 21 17 246 44 22.1158 7 26 120 0.2591438 1
7.107127 0 -0.0277778 -0.0277778 315.653 21 -1 266 39 1.350635 7 25 128 0.3235065 0
5.68224  6.10066 0.223951 -0.107383 145.597 22 -25 238 43 11.4%49 7 24 130 0.237815 1
6.3491  31.3498 -0.0666667 0.933333 297.216 21 -44 232 42 14.6414 7 24 130 0.20215 1
6.94507  17.2207 -0.18994 0.0322823 126207 23 18 236 39 8.16667 7 22 134 0347043 1
5.720965 0 0.1666667 -0.0555556 59.77807 20 -14 222 44 5.557273 7 31 136 02183223 0
11.0021 0 0 ] 0 22 -14 216 41 0 7 33 141 -0.1006884 0
6.322749 3.201004 0.0433604 -0.289972% 219.4045 23 -14 223 46 6.090526 7 28 141 0.0875986 0
12.10071 0 ) o 0 19 -11 235 45 0 7 32 141 0.0325174 0
5.767116 5.601783 0.168 0.5013334 100.9125 19 -10 236 45 10.5765% 7 32 141 0.0569549 0
6.663237 0 0.1111111 27.28059 19 -19 217 40 2.132382 7 27 142 0.0422743 0
6.663237 0 0.3555356 153.9813 19 -19 217 40 2132382 7 27 142 0.258859 0
6.326734 0 0.0777778 162.1451 24 -11 234 38 3.013085 7 30 143 0.0629181 0
7.6985 403962 -0.18071% 328.09 19 -29 238 48 23.479 7 26 144 0232276 1
6.912302 64.26605 0.1063554 -0.6714224 2742828 23 8 264 36 14.99095 7 23 144 02427415 0
8.721562 15.8401% -0.1277778 0.0944444 2523127 21 -27 228 45 3.022497 7 32 144 02011265 0
7446209 21.88198 -0.2180294 0.5597484 254.7515 25 -4 235 42 6.931355 7 28 144 0.090095% 0
7.109727 14.58812 0.0649895 0.1761006 254.7895 20 -27 230 45 6.93141% 7 27 144 0.0912877 0
6.205274 3.603761 -0.1111111 -0.3333333 214.4067 13 19 281 43 6.843968 7 22 145 0.2929403 0

Figure 41. Input database compiled for ML.

When building an ML model, the model is first trained on a training dataset. The trained model
is then evaluated on whether it can perform well on unseen data. Hence, it is a common approach
to split the original dataset into training and testing subsets to check if the ML model performs
well on data that it has not seen. A split ratio of 80%/20% is applied in this study, which means
80% of the original data is chosen for model training and the remaining 20% is used to check the

performance of the model applied to unseen data.

However, the drawback of using only one split of training and testing sets is that the ML model
performance can vary greatly depending on which samples were used in the training and testing
sets. One way to avoid this problem is to build a model several times using different training and
testing sets each time, then calculate the performance to be the average of all test results. This
general method is known as cross-validation. Through cross-validation, the original dataset is
divided into k folds, k-1 folds are used as the training set, and the remaining one fold is used as
the testing set. The process is repeated k times so that each fold is used as a testing fold, and the

final performance of the model is evaluated by the average performance for each testing fold. In
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this study, five-fold cross-validation, corresponding to an 80%/20% data split, was used. Figure

42 illustrates the cross-validation procedure in this study.

Iteration 1 — Performance 1

Iteration 2 — Performance 2

Iteration 3 | | | | | | — Performance 3 Average
performance

Iteration 4 — Performance 4

Iteration 5 — Performance 5

80% training folds ~ 20% testing folds

Figure 42. Five-fold cross-validation procedure in ML.

6.3 Evaluation methods

For classification problems, there are many evaluation methods that can be adopted to assess
the performance of ML models. In the present study, Accuracy, Precision, Recall, F1 score, and

AUC score are used for the evaluation of ML algorithms in landslide binary classification.

Accuracy is the fraction of all predictions that the model gets right. Formally, Accuracy has

the following definition:

Number of correct predictions

R _ Eq. (4
ccuracy Total number of predictions o

For binary classification problems, Accuracy can also be calculated in terms of positives and

negatives as follows:

R ~ TP¥IN Fo.5)
Uy = P TNTFP+FN 4

where TP=True positives, TN=True negatives, FP=False positives, and FN=False negatives. These
positive and negative values can be determined by the confusion matrix (Figures 43 through 46),

which is used for evaluating the performance of a classification model as it compares the actual
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target values with those predicted by the ML models. Accuracy, as shown in Figure 43,
summarizes the performance of a classification model as the number of correct predictions divided

by the total number of predictions, so it reflects the overall performance of the model.

‘ Predicted ‘

@Rﬁql)\ | Negative (0)
True Fal
Positive Neasi/e

: Fa True
Negative (0) Pm Negative >

Accuracy

‘ Ground Truth ‘

Figure 43. Confusion matrix for binary classification and definition of Accuracy.

Precision is a measure of correctness that is achieved in positive prediction. It tells how many
predictions are actually positive out of the total positive predicted. Precision is defined as the ratio
of the total number of correctly classified positive classes divided by the total number of predicted

positive classes (see Figure 44).

‘ Predicted ‘

‘Positive (1) ‘Negative (V) ‘
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Figure 44. Confusion matrix for binary classification and definition of Precision.
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Hence, Precision is calculated as:

TP
ision = —— Eq. (6
Precision TPrEP q. (6)

Precision reflects the reliability of the prediction model. If a model always predicts the occurrence
of landslides, it might produce many false positives, making the model have a low Precision value
and thus unreliable for users. Although a model with low Precision will be unlikely to miss positive
events, the model is unreliable and will cause a waste of time, money, manpower, and public

anxiety in the case of landslide predictions.

Recall, on the other hand, is a measure of actual observations that are predicted correctly, i.e.,
how many observations of positive class are actually predicted as positive. It is also known as
Sensitivity. It is defined as the ratio of the total number of correctly classified positive classes

divided by the total number of positive classes (see Figure 45).
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Figure 45. Confusion matrix for binary classification and definition of Recall.

Recall is calculated as:

TP

Recall = TPTFN

Eq. (7)

Recall considers all the positive samples and how many of them are identified correctly. Recall is
important to applications in the context of medical diagnostics or severe hazards because missing

positive class will come with serious consequences.
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However, Precision and Recall are often in a collision, which means improving one score can
come at the cost of decreasing the other. Given that there is a trade-off between Precision and
Recall, the F1 score is introduced as the harmonic mean of Precision and Recall, representing a
balance between them. F1 score is a number between 0 and 1, where 0 is the worst possible score
(i.e., the model predicts all observations incorrectly) and 1 is a perfect score (i.e., the model

predicts all observations correctly). F1 score is calculated as:

F1=2 (Recall x Precision)
=%
(Recall + Precision)

Eq. (8)

For a binary classification problem, many classification algorithms like LR use probability
threshold to distribute samples into classes. In most cases, the probability threshold defaults to 0.5.
That means the algorithm classifies a sample as positive if the probability of being positive is
above 0.5 and negative if the probability is below 0.5. However, the probability thresholds are not
necessarily 0.5 in many cases like medical diagnostics or severe hazards, where it is more rational
to choose a low probability threshold to prevent any chance of the positives being misclassified.
A receiver operating characteristic curve (ROC curve) is a curve showing the performance of the
classification model for all probability thresholds. This curve plots two parameters: true positive
rate (TPR) and false positive rate (FPR), as shown in Figure 46. TPR is the same as Recall, while
FPR is defined as:

FP
FPR =——— Eq. (9
FP+TN a0
‘ Predicted ‘
‘ Positive (1) ‘ ‘Negative (0) ‘
— ™\
= - True False
= TPR
= Positive (1) } Positive Negative <Z|
= >
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o
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S Y

Figure 46. Confusion matrix for binary classification and definition of TPR and FPR.
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As Figure 47 shows, the ROC curve provides a simple way to demonstrate the model
performance under different probability thresholds. Specifically, it summarizes all the confusion
matrices that each threshold produces without having to sort through the confusion matrices; each
point in the ROC curve represents a relationship between TPR and FPR under one probability
threshold used for classification. AUC score is the area under the ROC curve, and it helps decide
which classification model is better by comparing the area under different ROC curves of the
models. As Figure 47 shows, a perfect classifier yields an AUC score of 1, whereas a random
classifier yields an AUC score of 0.5. Hence, the characteristic of assembled evaluation makes
AUC score an important metric for the evaluation of model performance; a higher AUC score

suggests a superior overall performance of a classification model.
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Figure 47. lllustration of ROC curve and AUC score.

6.4 ML results and LSM

Four ML algorithms (LR, SVM, RF, and GBM) were used for landslide susceptibility mapping
using the database containing 3000 landslide points (positive samples) and 3000 non-landslide
points (negative samples). Table 9 shows the model performance of the four algorithms, and it is
found that GBM has the best classification performance compared to the other three algorithms.
Among the four models, the AUC value of the GBM algorithm is 0.872, which indicates very good
performance in classifying landslides and non-landslides under different probability thresholds.

Therefore, the trained GBM model is used to predict the probability of landslide occurrence for
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the whole study area. Specifically, fourteen landslide causative factors are attached to every pixel
in the study area, and the trained model is applied to predict the probability of landslide for each

pixel.

Table 9. Model performance using ML methods for LSM.

Model Accuracy Precision Recall F1 AUC
LR 0.773 0.761 0.796 0.778 0.851
SVM 0.782 0.758 0.827 0.791 0.855
RF 0.797 0.769 0.848 0.807 0.869
GBM 0.803 0.775 0.855 0.813 0.872
Avg. 0.789 0.766 0.832 0.797 0.862

A landslide susceptibility map for the study area, as shown in Figure 48, is generated using the
GBM model. According to the probability of landslide occurrence from 0 to 1, five susceptibility
zones are classified with an equal interval of probability. The relationship between susceptibility
classes and the probability of landslide occurrence is shown in Table 8. By comparing the
susceptibility maps generated by the frequency ratio method and the GBM model (see Figure 49),
it is found that the model based on the frequency ratio method overestimates landslide risk in many
areas. In contrast, the model based on ML shows a better performance in matching the spatial
distribution of actual landslide events. For example, the landslide susceptibility map based on the
frequency ratio method shows that there are large areas with a high risk of landslides (yellow
background) but few actual landslide occurrences. On the other hand, the landslide susceptibility
map based on the ML method shows a better consistency between landslide occurrence and
susceptibility. Most landslide data points are distributed within the areas of high and very high risk
(orange and red backgrounds in the map using the ML method), which indicates a more accurate

predictive model.
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6.5 Model explainability

ML models are often referred to as black boxes, and a significant downside of using ML
method is losing the ability to quickly interpret the results and explain the relationships between
causative factors and predicted outcomes. However, in scientific domains, it is necessary to
understand how models learn the problem so that it is possible to combine the ML algorithms and
physical mechanism from domain knowledge to analyze the reliability and generalizability of the
model. Specifically, it is important to understand the main factors that affect the output of the
model and the importance ranking of all input factors. Hence, explainable ML techniques are

needed to unravel some of these aspects.

One of these techniques is the SHAP (SHapley Additive exPlanations) method, which is used
to explain how much each feature has contributed to the output and thus allows local and global
analysis for the dataset. In this study, the SHAP plot for landslide susceptibility mapping based on
the GBM model is shown in Figure 50.
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Figure 50. SHAP plot for GBM model of LSM.
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SHAP plot is based on cooperative game theory and used to increase the transparency and
interpretability of ML models. SHAP plot shows how much a single feature affects the prediction.
In Figure 50, the sequence of the left list represents the importance ranking of all factors. For
example, the slope makes the most significant contribution to the output, and the SHAP value
increases as the slope value increases. That means a higher slope value steers the ML model toward
a more positive prediction (i.e., a higher probability of landslide). In the SHAP plot, it is found
that among all factors, slope, clay content, elevation, SPI, weight (bulk density), and profile
curvature have a relatively high contribution to the prediction of a landslide occurrence. According
to the physical model of landslide, slope angle directly influences the shear stress of soil along
potential failure surfaces of a slope, and that is the reason for its top ranking of importance to the
model prediction. Clay content in the slope material also has a great impact on the shear strength
and other characteristics of soil that contribute to the occurrence of landslides. Higher elevation
values have a high negative contribution, which is because in high altitude areas, clay content
decreases and rock becomes the main geological material; as a result, the probability of landslides
decreases as elevation increases. Compared to the plan curvature, profile curvature contributes
more to the model prediction, which is reasonable based on the definition of plan and profile
curvatures from a geometric perspective. The typical geometry of profile curvature makes it have

a more significant impact on landslide occurrence.

7 Spatiotemporal Analysis for LSM

Conventional landslide susceptibility mapping focuses on the prediction of landslide spatial
distribution based on static causative factors (e.g., topographic factors), which only vary in space.
Positive labels (landslides) and negative labels (non-landslides) are sampled in different locations
and spatial causative factors are obtained for each sample. ML models are then trained as classifiers
to predict the probability of landslides in space based on all samples and the corresponding
causative factors. By extracting the information in spatial factors, ML models learn the
relationships between landslide occurrence and spatial features; thus, the spatial distribution of
landslide risk can be predicted. However, pure spatial features cannot fully explain the timing of
landslide occurrence at a given location. To further predict landslides both in spatial and temporal

scales, spatiotemporal landslide susceptibility mapping is conducted in the present study.
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7.1 Landslide database for spatiotemporal ML

Landslide inventories used for temporal analysis have been compiled and discussed in Section
2. Given that most landslides in Pennsylvania are concentrated in the southwestern regions of
Pennsylvania, PennDOT Districts 11 and 12 were selected for the study. Integrating temporal
analysis requires the creation of a database of landslide events that includes accurate landslide
event dates. In this case, as the initial available landslide data set (from PennDOT Districts 11 and
12) containing the date of the landslide was limited, data from adjacent areas with accurate
landslide event dates were included in the database. As a result, northern West Virginia and eastern
Ohio were incorporated into the study area. In the present study, the landslide inventories are based
on NASA Cooperative Open Online Landslide Repository (COOLR) project and PennDOT
Districts 11 and 12 Slide Database. There are 223 landslide data points in the study area, as shown
in Figure 51, where red dots represent 173 recorded landslides from NASA COOLR project and
yellow dots represent 50 recorded landslides from PennDOT Districts 11 and 12. All 223

landslides are provided with accurate event dates.
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Figure 51. Landslide distribution and study area for spatiotemporal analysis.
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7.2 Spatiotemporal causative factors

In addition to spatial topographic factors, previous studies have shown that landslide
occurrence is closely related to rainfall, which is time-varying and can explain the timing of
landslide occurrence at a given location. Hence, to train ML models with the ability to predict
landslides on the temporal scale, rainfall factors should be included as additional features. For
spatiotemporal prediction of landslides, the same fourteen topographic factors are kept to represent
spatial features, and eight additional rainfall factors are included to represent temporal features in
the database. These eight rainfall factors are cumulative precipitation 1 day, 3 days, 1 week, 2
weeks, 3 weeks, 1 month, 2 months, and 3 months preceding landslide events, which are
downloaded from Daymet (https://daymet.ornl.gov/). A portion of the spatiotemporal database is

shown in Figure 52.

Bulk_density NDWVI 1 day 3days Tdays 14days 21days 30days 60days 90days  label

10 = kg-'m3 - mm mm mm mm mm mm mm mm

120 0.291498 0 1.24 18.7 255 26.01 54.08 103.91 195.58 1
130 0.20215 0 0 66.49 §9.82 106.97 12747  160.85 33375 1
130 0.237815 0 0 34.97 74.11 99.24 113.36 199.71 295.17 1
134 0.347043 0 8.31 12.97 62.12 3338 10026 21034  271.81 1
144 0.232276 0 ] 17.44 18.76 24.42 46.02 101.93  189.61 1
146 0.270945 0 0 12 21.32 66.53 80.51 219.16  306.29 1
148 0.331658 11.18 35.08 43.73 76.79 98.24 9824 21832 31324 1
149 0.317233 3.6 41.54 59.36 59.36 70.87 98.33 200.54 31994 1
149 0.359738  44.08 99.38 102.82 12818 161.32 22883 32412 446.3 1
150 0.219423 2391 33.28 70.33 75.55 123.72 1496 228.68 29547 1
151 0.30739 3.41 3547 47.36 93.24 98.04 126.85 295.91 362.22 1
151 0.30739 5.8 5.8 5.8 22.37 26.95 4781 15392 24535 1
151 0.338981 921 23.95 47.02 72.72 269.88  275.79  406.77  489.92 1
5 0.278281 0 13.5 36.62 50.27 63.07 72.07 196.79 = 302.45 1

2 0.265096 0 12.55 12.55 34.09 42.6 116.67 20124 24583 1
152 0.294835 27.33 27.33 43.96 11595 12668 17995 2859 46984 1
153 0.128275  3.83 31.15 33.14 46.96 68.48 87.07 203.12 | 22712 1

Figure 52. Input database compiled for spatiotemporal prediction.

By introducing cumulative precipitation in different periods as input factors, ML algorithms
can find relationships between precipitation and the probability of landslide occurrence. Previous
studies have shown that landslides triggered by a storm are not necessarily just caused by that
specific storm alone. Soil saturation is an important triggering mechanism for landslides, and in

addition to being affected by current rainfall, soil saturation is also related to previous cumulative
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precipitation. For example, a landslide can occur with little precipitation if the soil is already in a
high-water-content condition due to previous precipitation events. Therefore, it is necessary to
include cumulative precipitation in different periods preceding landslide event dates. These
additional rainfall factors also make it possible for ML models to predict the timing of landslide
occurrence at a given location because when static topographic factors are the same, different
rainfall factors can provide extra temporal information for the algorithms to classify landslides and
non-landslides. From this perspective, the database for spatiotemporal prediction should contain

landslides and non-landslides samples both in spatial and temporal scales.

7.3 Spatiotemporal sampling methods

To incorporate spatial and temporal information into the database, non-landslides need to be
sampled both in space and time. Figure 53 shows a demonstration of the sampling method used
for spatiotemporal analysis. For each landslide event/sample, one non-landslide is randomly
sampled within a ring-shaped zone (buffer), between 0.5 km and 1.5 km, from the landslide
location, and it is assigned the same date as that of the landslide event. Buffer-controlled sampling
creates non-landslides that have different spatial features from landslides. The size of the ring-
shaped buffer zone accounts for the typical landslide sizes in the study area; the minimum distance
of 0.5 km ensures that non-landslides randomly sampled in space will not coincide with the
landslides, while the maximum distance of 1.5 km restricts the sampling range of non-landslides.
This restriction reduces the possibility that non-landslides are sampled in areas like rivers,
buildings, or roads that are not comparable with landslide areas. After spatial sampling, temporal
sampling is conducted both for the landslide samples and the non-landslide samples. Different
landslide window periods are used for temporal sampling in this study; the window period of 1
year is illustrated in Figure 53 as an example. The window period of 1 year assumes that there was
no landslide 1 year prior to the landslide event date. This assumption is based on the typical period
and frequency of landslide investigation in the study area. In addition, it is assumed that landslides
are regularly reported in the study area. Finally, for each landslide event in the database (red solid
circle in Figure 53), there are three corresponding non-landslide samples (green solid circles in
Figure 53) in both spatial and temporal scales as shown in Figure 53. Every sample (positive or
negative) is attached with fourteen topographic factors and eight rainfall factors, forming the

spatiotemporal database for training ML models.
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Figure 53. Sampling approach for spatiotemporal analysis (landslide window period: 1

year).

In the sampling approach shown in Figure 53, the ratio of positive to negative samples is 1:3,
which makes the spatiotemporal dataset imbalanced. The imbalanced dataset can cause poor
classification performance of minority classes. If the number of majority samples is much greater
than that of minority samples, ML models tend to always predict the outcome as the majority class.
Given that the general mechanism of ML algorithms is to minimize the error between predicted
results and the ground truth, a poor classification of minority samples can still achieve very high
overall accuracy in the model. Therefore, conventional ML models may be unreliable when

dealing with imbalanced datasets.

In general, there are three approaches to tackling imbalanced datasets. The first one is applying
a weighted cross-entropy loss function for ML algorithms. This method addresses the structures
and mechanisms of ML algorithms. By modifying the loss function, the ML model pays more
attention to the minority class while conducting classification tasks. However, this method can

only increase the Recall of the model with fewer minority samples being misclassified. However,
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the Precision will decrease significantly, and the model is unreliable. The second approach is over-
sampling, through which new minority samples will be created using statistical theories to achieve
a balanced dataset. However, as a product of natural factors, the characteristics of landslides are
complex. New landslide samples created based on data science will not be interpretable. In the
present study, the third method, which is under-sampling, is adopted to tackle the imbalanced

spatiotemporal dataset. A demonstration of the under-sampling method is shown in Figure 54.

Label 0 Label 1
_K\\ Label 0 Label 1
gy
Original dataset Under-sampled dataset

Figure 54. Under-sampling method for imbalanced dataset.

The under-sampling method randomly selects negative samples with the same number as the
positive samples to form a balanced database for model training. Since under-sampled Label 0s
are randomly selected from the original Label Os, they are assumed to be able to represent the
distribution of the original Label Os. In the following section, different ways of including more
negative samples in the original dataset to form different spatiotemporal datasets are discussed,

and the performance of ML models based on these datasets is compared and analyzed.

7.4 Spatiotemporal ML with different spatiotemporal datasets

Using different landslide window periods, more non-landslide samples are added to the
spatiotemporal dataset through sampling in space and time scales. Figure 55 shows spatiotemporal

datasets constructed by including non-landslides with different locations and window periods.
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From Figure 55(a) to 55(h), more non-landslides are sampled within the buffer zone in space
for each landslide event; in the time scale, non-landslides are sampled again for both the landslide
and non-landslide locations. The number of temporal non-landslides increases as more landslide
window periods are included. In the spatiotemporal dataset 8, for example, eight landslide window
periods are used from 0.5 year to 4 years; for each landslide point (red solid circle in the figure),
it is assumed that there is no landslide occurrence 0.5 year, 1 year, 1.5 years, 2 years, 2.5 years, 3
years, 3.5 years, and 4 years prior to the event date at the same location. For the nine spatial non-
landslides in the buffer zone (green solid circles within the buffer zone in the figure), each of them
is sampled with one window period. By doing this, both spatial and temporal information are
introduced into the dataset, and the amount of information increases as more spatial and temporal

non-landslides are sampled.

For each spatiotemporal dataset, four ML algorithms are used to conduct binary classification.
The results show that the RF model outperforms the other three algorithms for all datasets, and the

RF model performance for each dataset is shown in Table 10.

Table 10. RF model performance for spatiotemporal landslide susceptibility mapping.

Dataset  Accuracy Precision  Recall F1score AUC score

1 0.71 0.72 0.69 0.71 0.77
2 0.72 0.73 0.69 0.71 0.79
3 0.75 0.77 0.70 0.73 0.81
4 0.76 0.78 0.72 0.75 0.83
5 0.77 0.80 0.70 0.75 0.84
6 0.78 0.79 0.74 0.76 0.85
7 0.79 0.81 0.72 0.77 0.86
8 0.78 0.79 0.76 0.77 0.86
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The results in Table 10 indicate that model performance improves as more non-landslides are
included in the spatiotemporal datasets 1 to 8. The AUC score reaches the optimum of 0.86 in the
spatiotemporal dataset 7, where eight non-landslides are sampled in space and seven landslide
window periods are considered. The model performance doesn’t meaningfully improve in dataset
8. From datasets 1 to 7, more non-landslide samples containing different spatial and temporal
information have been added to the dataset for the training of ML models. As more information is
provided for training, the ML models learn more representative and generalizable relationships
from the dataset, and the model performance is steadily improved. However, such improvement
will be limited as the model’s performance reaches an optimum. Although more spatial and
temporal information is introduced to the dataset as more non-landslides are sampled, the under-
sampling method randomly selects negative samples with the same number as positive samples,
which means there are always 223 non-landslides being under-sampled due to the fact that there
are 223 landslides in the database. Consequently, although more spatiotemporal non-landslides are
included, the weights of newly added non-landslides are diluted by under-sampling, and the
effective spatial and temporal information in the dataset is saturated. Therefore, as the results of
datasets 7 and 8 show, the model performance reaches an optimal level and then is kept at that
level even with more non-landslide samples. The model trained by dataset 8 is used as the optimal

model to conduct spatiotemporal landslide susceptibility mapping.

The feature importance of the model from SHAP plot is shown in Figure 56. It is shown that
by incorporating topographic and rainfall factors into ML, the model predicts landslide occurrence
from both spatial and temporal perspectives. Figure 56 shows that the cumulative precipitation 7
days, instead of 1 day, preceding the landslide event is the most important factor in landslide
occurrence, which is reasonable since the 7-day cumulative precipitation reflects the increase in
soil saturation caused by rainfall and accounts for the lag effect. Besides precipitation, the
topographic factors of elevation and slope also contribute significantly to the model outcome

according to the SHAP plot.

Figure 56 shows that cumulative precipitation of various periods has a great effect on the
potential for landslides; this is consistent with geotechnical engineering experience that poor
drainage and lack of drainage maintenance during and after rainfall events contribute to landslide

occurrence. This consistency suggests good predictive capability and explainability of the
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developed spatiotemporal ML model. However, it is cautioned that the disproportionate effect of
precipitation in Figure 56 may be due to the fact that only rainfall-induced landslides are included

for model training (i.e., the model output is just being consistent with the model input).
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Figure 56. SHAP plot for the ML model in spatiotemporal landslide susceptibility mapping

based on spatiotemporal dataset 8.
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7.5 Spatiotemporal LSM
7.5.1 Pure spatial susceptibility map

Before generating a spatiotemporal landslide susceptibility map, a pure spatial susceptibility
mapping is conducted as the baseline for comparison purposes. The framework of pure spatial
susceptibility mapping is the same as that described in Section 6, except that a different landslide
database is used. An illustration of the database for pure spatial analysis is shown in Figure 57. In
the spatiotemporal dataset 8, the temporal/precipitation information can be disabled by removing
the eight rainfall factors; as such, the dataset can be used to train ML models for pure landslide
susceptibility mapping. The landslide susceptibility map generated is shown in Figure 58, where
the black solid circles are the 223 landslide data points, and the AUC score of the ML model is
0.77. A comparison of the pure spatial landslide susceptibility map and the previous landslide
susceptibility map using the much larger landslide database (without event dates) is shown in

Figure 59, where only PennDOT Districts 11 and 12 are shown.
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Figure 57. Spatiotemporal dataset 8 for pure spatial susceptibility mapping.

66



® [andslide events

Landslide susceptibility zone

Figure 58. Pure spatial susceptibility map.

Spatial susceptibility map
using 4543 landslide data points

foungst

Pure spatial susceptibility map
R using 223 landslide data points

=

& : ) sy LEDS
i . Fandshde e-Vén-m Yo ® Landslide events
Landslide susceptibility zone Landslide susceptibility zone
Hl Very ow High ‘| g Very low High
I Low B Very high I Low B Very high
I Moderate

Moderate

v + Cumberiand P ! Combertand

Figure 59. Comparison of pure spatial landslide susceptibility map using different

databases.

In Figure 59, the black dots are 4,543 historical landslides (without event dates) as discussed

in Section 6. The ML model trained using 4,543 landslide data points demonstrates superior
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performance as the generated map can delineate areas with higher susceptibility. However, in the
pure spatial susceptibility map based on the 223 landslide data points, there are large areas with a
low probability of landslides (blue background) but numerous actual landslide occurrences. The
AUC scores for the ML model trained using 4,543 landslide data points and the ML model trained
using 223 landslide data points are 0.87 and 0.77, respectively, further confirming the superior
performance of the former model. Figure 59 highlights the importance of the amount of landslide

data points in conducting landslide susceptibility mapping.

7.5.2 Spatiotemporal susceptibility map

Based on the trained model using spatiotemporal dataset 8, the spatiotemporal landslide
susceptibility map in the study area can be generated. Given that the rainfall factors are time-
varying, the spatiotemporal susceptibility map also changes with time. PennDOT Districts 11 and
12 reported more than 12 landslide events on 02/15/2018 after a storm event. These reported events
provide an opportunity to compare landslide susceptibility maps generated based on pure spatial
mapping and spatiotemporal mapping to highlight the importance of incorporating precipitation
data into susceptibility mapping. Figure 60 compares the pure spatial and temporal susceptibility
maps for PennDOT Districts 11 and 12 and their surrounding areas for one rainfall event on
02/15/2018, where the reported landslide events are represented using red solid circles. Figure 60
shows that the spatial distribution of the reported landslide events on 02/15/2018 has a much better
match with the spatiotemporal susceptibility map than with the pure spatial susceptibility map.
Table 11 shows the predicted susceptibilities from the pure spatial ML model and spatiotemporal
ML model for select 12 landslides reported on 02/15/2018. The pure spatial prediction shows a
low probability (< 0.5) of landslide occurrence for some locations of the reported events; hence,
considering only terrain factors, landslide susceptibility is significantly underestimated by the pure
spatial susceptibility mapping. On the other hand, accounting for precipitation data for the event,
the spatiotemporal ML model predicted much higher susceptibility for these locations for the

single event, consistent with their actual occurrence.

Figure 60 shows that the spatiotemporal susceptibility map indicates a high probability of
landslides in the places where landslides actually occurred, but also shows high probabilities of

landslides in other places (yellow and red backgrounds) without reported landslide events. This
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discrepancy may be due to a combination of the following reasons. First, there may be
undiscovered or unreported landslide events in areas with high risk. Second, there is uncertainty
in the output of the ML model due to noise (error or irrelevant information) in data, incomplete
coverage of the domain, and imperfect models. In the present study, the location of landslide points
has an uncertainty of 1-5 km according to the NASA COOLR project; therefore, the value of
causative factors obtained at the location of landslides has an error (in the ideal situation, the
causative factors should be obtained at the exact location of the landslide), which introduces noise
into the training data for ML. Additionally, the small landslide database (223 data points) may
result in the low generalizability of the model. Hence, the ML model has uncertainty when
predicting data beyond the training samples. The model performance will improve as more

landslide data points are included in the model training.
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Figure 60. Comparison between pure spatial and spatiotemporal maps for 02/15/2018.
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Table 11. Predicted susceptibilities from pure spatial ML model and spatiotemporal ML
model for 12 landslides recorded on 02/15/2018.

Landslide Susceptibility
Number Latitude Longitude Pure spatial Spatiotemporal
ML Model ML Model

1 -79.797 40.016 0.62 0.97

2 -80.238 39.890 0.74 0.86

3 -80.170 39.934 0.21 0.83

4 -79.923 40.057 0.85 0.99

5 -79.936 40.047 0.51 0.76

6 -80.438 40.093 0.51 0.86

7 -80.365 40.086 0.31 0.79

8 -80.364 40.092 0.58 0.87

9 -80.377 40.389 0.63 0.91

10 -80.380 40.162 0.74 0.88

11 -80.369 40.166 0.47 0.67

12 -80.370 40.188 0.59 0.82

To further explain the superior performance of the spatiotemporal susceptibility map, Figure
61 compares the pure spatial susceptibility map, 7-day cumulative precipitation map, and the
spatiotemporal susceptibility map. The cumulative precipitation of 7 days prior to the event is
taken as an example of the rainfall effect since the ML model has shown that this factor is the most
important factor for spatiotemporal prediction (see Figure 56). Figure 61 shows that the
spatiotemporal susceptibility map accounts for the combined effect of topographic factors, as
demonstrated in Figure 61(a), and precipitation factors, as demonstrated in Figure 61(b). By
incorporating rainfall factors, the proposed spatiotemporal susceptibility mapping approach is a
useful tool to assist in predicting the occurrence and timing of potential landslides taking place due

to precipitation events. The map highlights areas having very low to very high risk of landslide
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susceptibility with precipitation, which may be used to establish a hierarchy and mitigate risk for
slopes at “very high risk” for landslide susceptibility. The map may also be used for forecasting
purposes. For example, it may be used as an aid for planning and programming purposes to address
slopes with “very high” landslide susceptibility first. The map may be used in the event of
incoming storms to target slopes with a very high risk of landslide susceptibility so that mitigation
or preventative measures (such as temporary road closure) can be employed to ensure safe travel
and minimize damage. In addition, the map may also help to target post-storm roadway/slope

inspections to the most critical and high-risk locations first.
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Figure 61. Comparison and interpretation of spatiotemporal susceptibility map: (a) pure
spatial susceptibility map; (b) 7-day cumulative precipitation map for 02/15/2018; (c)
spatiotemporal susceptibility map for 02/15/2018.

8 Conclusions and Limitations
8.1 Conclusions

To develop a warning system for rainfall-induced landslides, LSM is conducted using different
ML techniques. Two landslide databases for spatial and spatiotemporal analyses of landslides in
Pennsylvania and adjacent areas are compiled. Based on the digitized map of USGS Topo sheets,
a spatial landslide database is compiled with 4,543 historical landslides in southwestern
Pennsylvania. The database with pertinent information is stored on three platforms: ArcGIS,
Google Earth, and Excel. The database for spatiotemporal analysis has 387 landslide events from
three data sources: USGS Landslide Inventory, NASA COOLR, and PennDOT District 12 Slide

Database. Due to similar terrain and climate conditions, landslide data in neighboring states is also
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included to extend the database. The database is stored on the same three platforms. Based on
landslide event dates, pre-event and post-event satellite images are collected and attached to each
landslide in the database with hyperlinks. Fourteen causative factors of landslides are downloaded
and calculated from Google Earth Engine and ArcGIS, and their values are extracted for every

landslide data point in the database.

Based on the landslide databases compiled in the study, the landslide susceptibility assessment
is conducted for PennDOT Districts 11 and 12 and adjacent areas, including northern West
Virginia and eastern Ohio. Based on the spatial landslide database, the frequency ratio method is
used to find the correlation between landslide occurrence and eight preliminarily selected causative
factors, and a preliminary LSM is generated in terms of frequency ratios. ML methods are applied
to conduct binary classification for landslide prediction with all fourteen landslide causative
factors. The results show that the best model is GBM, which yields an AUC score of 0.87. The
model is used to generate LSM showing the distribution of landslide probabilities. Based on the
spatiotemporal landslide database, the spatiotemporal ML is conducted to predict landslide
occurrence on both spatial and temporal scales. Eight additional rainfall factors are considered as
temporal features, and non-landslides are sampled both in space and time to introduce spatial and
temporal information into the datasets. Through the buffer-controlled sampling method and
different landslide window periods, different spatiotemporal landslide datasets are constructed and
the performance of ML models trained using these datasets is compared. The optimal model with
an AUC score of 0.86 is used for susceptibility mapping. The spatiotemporal landslide
susceptibility map is interpreted through comparisons with the pure spatial susceptibility map and
the 7-day cumulative precipitation map. The results indicate that the spatiotemporal ML model
can predict landslides, accounting for both spatial terrain factors and temporal rainfall factors, and
the model outperforms pure spatial ML models with the same database size. Hence, the
spatiotemporal LSM has the potential for applications in landslide hazard mitigation and

forecasting.

The LSMs generated from this study highlight areas having very low to very high risk of
landslide susceptibility with precipitation, which may be used to establish a hierarchy and mitigate
risk for slopes at “very high risk” for landslide susceptibility. The maps may also be used for

forecasting purposes. For example, they may be used as an aid for planning and programming
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purposes to address slopes with “very high” landslide susceptibility first. The maps may be used
in the event of incoming storms to target slopes with a very high risk of landslide susceptibility so
that mitigation or preventative measures (such as temporary road closure) can be employed to
ensure safe travel and minimize damage. In addition, the maps may also help to target post-storm

roadway/slope inspections to the most critical and high-risk locations first.

8.2 Limitations

From the perspective of data science, the limitations of the current study are discussed below.

Uncertainty with the location and date of landslide events: The longitude and latitude
coordinates of the landslide events have uncertainty. NASA COOLR catalog notes that there is a
location uncertainly for every recorded landslide event. Most of the events have a location
accuracy of 1 km or 5 km (Emberson et al. 2022), which means the landslides cannot be located
accurately by longitude and latitude coordinates provided by NASA COOLR. For USGS Landslide
Inventory, there is relative confidence in the characterization of the location of each landslide as
discussed in Section 2.1.2. Although only landslides with Confidence (5) and (8) are chosen and
included in the databases, the accurate locations of some landslides cannot be determined. In
addition to the location, the event dates recorded in NASA and the USGS database are also
estimated based on post-event on-site investigations. With the uncertainty in the location and event

date, the contributing factors and rainfall data may have similar uncertainty.

Static causative factors: The fourteen causative factors are assumed to be static (i.e., they do
not change with time). Since there was no advanced satellite imagery in the past, the true
contributing factor data for old landslides cannot be obtained. The causative factors are assumed
to be static; hence, modern satellite images representing the recent condition are assumed to
represent the condition at the event. The difference between the real causative variables at the

event time and those at the current time may cause errors in ML results.

Insufficient samples and variables in the current databases: From the perspective of data
science, the size of the training dataset has a significant impact on the performance of ML. Ample
training samples are required for ML algorithms to discover the true relationships between every

variable and the target. The current databases contain 4,543 and 223 landslide data points for
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spatial and spatiotemporal predictions, respectively, which may not be large enough for training
an excellent ML model. In addition to the number of samples, the number of features (causative
factors) is also important for model performance. The current databases contain fourteen spatial
causative factors and eight precipitation factors, which may not be enough for explaining all

landslide occurrences.

9 Recommendations and Instructions for Generating LSMs using the Developed ML Models

Based on the spatiotemporal landslide database, including 223 landslide data points with 14
topographic causative factors and eight rainfall factors, a Random Forest ML model was developed
and trained to predict the probability of landslide occurrence both in space and time. The developed
ML model and the relationship between causative factors (topographic and rainfall factors) and
landslide occurrence are specific to the landslide database compiled and utilized for model training.
If more landslides with event dates are reported in the study area, the landslide database can be
updated and the ML model should be updated using the new training samples. Consequently, the
relationship between causative factors and landslide occurrence should be updated acccordingly,
which will result in different LSMs. Because rainfall factors are time-varying factors, the
spatiotemporal LSM also changes with time: spatiotemporal LSM changes every day. Therefore,
to generate a spatiotemporal LSM, it is required to provide the model with those causative factors
at a specific date. In the present study, the fourteen topographic factors are assumed to be static,
which means they will not change with time. Hence, the most important step in constructing a
spatiotemporal LSM is to obtain rainfall factors for a specific date. If an incoming storm is
forecasted, it is essential to incorporate the forecasted rainfall amounts into the rainfall factors to

generate appropriate LSMs for the incoming storm.

The spatiotemporal LSM is not a single map as it dynamically varies with time based on
precipitation data. The landslide database and ML codes can be stored in a cloud platform or a

local platform. Procedures for generating the LSMs are presented below for each platform.
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9.1. Cloud platform

9.1.1 Deliveries

Number Items
1 Python code
2 Relevant data (landslide database in CSV and causative factors in TIF files)
3 ArcGIS template file

9.1.2 Requirements

Number Items
1 An account for Google Drive login
2 A cloud platform for Python (Google Colab is recommended)

9.1.3 Instructions

To create spatiotemporal LSMs for different dates, the corresponding rainfall factors at these
dates need to be downloaded and updated to the ML model. Hence, there will be frequent data
savings and downloads. Using a Cloud platform to implement Python codes is a convenient and

easy way for data import and export. The steps to generate an LSM are as follows.
Step 1: Google Drive login

A folder named “PennDOT project” containing all relevant data, including the landslide
database in Excel (e.g., Figure 13) and causative factors in TIF files (e.g., Figures 18 to 27 and 30
to 34), will be provided. Upload the folder to My Drive (see Figure 62). This folder contains the
data of 14 topographic causative factors in the study area in the format of TIF files (see Figure 63).
Since topographic factors will not change with time, they can be provided in advance and used
continuously without needing periodic updates. The folder also contains the landslide database in
CSV format for model training. It is noted that there is a subfolder named “rainfall images” (see
Figure 63), it will be created automatically as rainfall data is downloaded using the Python code,

which will be explained in Step 3 in detail.
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L Drive Q,  Search in Drive

+ New My Drive ~
lg My Drive Name 1
»[0 Computers BB PennDOT_project
O Sharad with ma
Figure 62. Upload the folder for relevant data.
L Drive Q, searchin Drive
+ New My Drive > PennDOT project ~
»[B My Drive Name

»[0 Computers

B rainfall_images
2, Shared with me
® Recent B SpatioTemporalDatabase.csv
¥ Starred
mTPItif
® Spam B
I Trash M Aspect.tif
¢ Storage (71% full)
. Clay.tif
10.71GB of 15 GB used
— M NASADEM.tif
| Getmorestorage )
\. /
M NDVLtif
. Sand.tif
M Slope.tif
. Texture.tif
. FieldCapacity.tif
[l Bulkpensity.if

PlanCurw.tif

ProfileCurwv.tif

SPLtif

TWILtIf

Figure 63. Contents in the folder of “PennDOT _project”.
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Step 2: Google Colab Setup

Google Colab is a cloud-based service that allows users to write and run Python code in the
web browser. The Google Colab setup process can be completed with the following steps across

all devices:

1). Visit the Google Colab page, which will direct the user to the Google Colaboratory

Welcome Page.

2). Click the Sign in button on the right top (see Figure 64).

T T " A mon 0

¢y Welcome To Colaboratory
Fle Edt View Insert Runtime Tools Help

itie i o [y *Code +Tet @ CopytoDive Connect ~ | A

Q| Getting started

Welcome to Colab!

If you're already familiar with Colab, check out this video to learn about interactive tables, the executed code history view, and the command
palette.

What is Colab?

Colab, or "Colaboratory”, allows you to write and execute Python in your browser, with

+ Zero configuration required

Figure 64. A Screenshot of Google Colab Welcome Notebook.

3). Sign in with a Gmail account (see Figure 65).

Google
Signin

Use your Google Account

Email or phone

Forgot email?

Not your computer? Use a private browsing window to sign
in. Learn more

Create account m

Figure 65. Google Sign-in Page.
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4). Ready to use Google Colab.

O & UntitledO.ipynb = B Comment 2% Share o% .

File Edit View Insert Rur

+ Code + Text Connect ~ # Editing A

<2 °

Figure 66. A Screenshot of an empty Google Colab Notebook.

Step 3: Python code implementation

A complete Python code will be provided for implementation. The code is divided into the

following four parts to implement according to their functions.

Part 1. Package installation

Run the codes as Figure 67 shows; this will install the required packages.

() ¢ PennDOT landslide_final_code.ipynb
PRO  File Edit View Insert Runtime Tools Help Lastsaved at2:35PM

o x + Code  + Text

= Files
+ Code + Text
o B B W Bl .
pip install imegecodecs
), gy sample_data [ ] pip install earthengine-api
]
[ ] import numpy as np

import pandas as pd
import seaborn as sns

from sklearn.preprocessing import Standardscaler

from sklearn.linear_model import LogisticRegression

fron sklearn.naive_bayes import GaussianNB, MultinomialNB
from sklearn.neighbors import KNeighborsClassifier

from sklearn.tree import DecisionTreeClassifier

from sklearn.metrics import accuracy_score, precision_score, recall_score,
from sklearn.ensemble inport GradientBoostingClassifier
from sklearn.ensemble import RandomForestclassifier

from sklearn.svm import SVC

rom sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score

from sklearn.model_selection import KFold

import matplotlib.pyplot as plt

rom sklearn.metrics import auc

from sklearn.metrics import RocCurveDisplay

from sklearn.metrics inport roc_curve

dmport shap

import statistics

from imblearn.under_sampling import RandomUndersampler

1_score, roc_auc_score

Figure 67. Python code in Part 1 for package installations.

78



Part 2. Link Google Drive and Python environment

Run the codes as Figure 68 shows, this will link the directories and data in Google Drive to

Colab. Afterward, the relevant data provided in the folder “PennDOT project” is available in

Colab.

O £ PennDOT landslide_final_code.ipynb

PRO  File Edit view Insert Runtime Tools Help All changes saved
. + Code + Text
:= Files O X
a e AR 8 g © from google.colab import drive
drive.mount('/content/gdrive’)
& d dri
{x} @ gdive Mounted at /content/gdrive
» @ MyDrive

Figure 68. Python code in Part 2 for linking to Google Drive.

Part 3. Download rainfall data for a specific date

Run the codes as Figure 69 shows, open the following URL in a web browser, and follow the

instructions to get a verification code for downloading data from Google Earth Engine.

Ve B R WG

# obtain rainfall data from Google Earth Engine
}ee.Authenticate()
ee.Initialize()

To authorize access needed by Earth Engine, open the following URL in a web browser and follow the instructions. If the web browser does not start automatically, please manually brouse th

https://code.earthengine.google.com/client-auth?scopes=https%3A//www.googleapis.com/auth/earthengine¥2ehttps¥3A//www.googleapis.com/auth/devstorage.full control&request_id=I1s9GBBFJIEC;

The authorization workflow will generate a code, which you should paste in the box below.
Enter verification code:

4

Figure 69. Python code in Part 3 for the authorization of accessing Google Earth Engine.

Run the codes as Figure 70 shows and enter a specific date in the box. The rainfall data for that
date will be downloaded from Google Earth Engine and automatically saved in a new subfolder

named “rainfall_images” in the folder “PennDOT _project”.
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+ Code + Text

e — B LT R ——

@ .filterDate(dayOfInterest.advance(-89, ‘day'), dayOfInterest.advance(1, 'day')).sum()
rainfall 90 = dataset_9@.select('prcp’)
reprojected_rainfall 90 = rainfall_9@.reproject('EPSG:32617°, None, 38)

task8 = ee.batch.Export.image.toDrive(image=reprojected_rainfall_9e,
region=my_region,
description='rainfall_9@days',
folder="PennDOT_project/rainfall_images”,
scale=38)

taskl.start()
task2.start()
task3.start()
task4.start()
taskS.start()
task6.start()
task7.start()
task8.start()

taskl_status = taskl.status()
while (taskl_status['state'] != "COMPLETED'):

print('The image of task 1 is downloading from DAYMET...', end="\r')
time.sleep(1)

print(‘taskl downloading is finished!')

Please enter the date:| )

Figure 70. Python code in Part 3 for downloading rainfall data from Google Earth Engine.

Part 4. Generate a landslide susceptibility map for the specific date

Run the remaining codes, then an LSM for the specific date entered above (2018-02-15 is
entered as an example in this instruction) will be generated automatically, which is shown in Figure
71 (the map is on 2018-02-15). It is noted that the map generated in Python is within a larger
rectangular area than the study area. The rectangular range is used for convenience for matrix
operations in Python. To visualize the susceptibility map for the study area specifically, the

following step in ArcGIS is required.
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+ Code + Text

[ 1] reshape_risk = np.reshape(risk, ((7258, 87@9)))
risk_map = plt.imshow(reshape risk, 'jet’, vmin = @, vmax = 1)
plt.colorbar(risk_map)

<matplotlib.colorbar.Colorbar at @x7db3f3eldbag>

A

0 1000 2000 3000 4000 5000 6000 7000 8000

Figure 71. Python code in Part 4 for generating landslide susceptibility map.

Step 4: Map visualization in ArcGIS

Upload the LSM generated in Python to ArcGIS, as Figure 72 shows.

v X

Binghamts | (<) [ Find Tools s |®

Favorites Toolboxes Portal

~ Project Favorites

. Calculate Fi

“\. Painwise Buffer

“ Near

. Pairwi

- “X. Spatial Join
Haeton | £ pairwise Intersect

v Recent
B X Table To Point

“, Extract by Mask.
Reading | Merge

i “. Export Tabl

. Extract Multi Values to Poi

X, Raster Calculator

A, Flow Accumulati
“\. Flow Direction 5
. Curvature .

|| A Add XY Co

Maryland

Figure 72. The landslide susceptibility map uploaded to ArcGIS.
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An ArcGIS template file will be provided, where the boundary shape of the study area is
included, as Figure 73 shows. To create the susceptibility map for the study area specifically, an
Extraction Tool in ArcGIS can be used to clip the rectangular map (see Figures 73 and 74). Finally,
to classify the probability of landslide occurrence into five classes with equal intervals (0%, 20%,
40%, 60%, 80%, 100%), edit the symbology for the map as Figure 75 shows. Click on any location

on the map; the corresponding landslide probability will pop up, as Figure 75 shows.

] Map %

Clevelp=d 5 Find Too! ) P
andusky 2z

Woaster Canton

Lancaster

recess.. Attiibut.. Cotalog Histery Print Symbole

Figure 73. The boundary shape of the study area in ArcGIS.

82



Geoprocessing
® Extract by Mask

R s ® @ Input raster: the
map_rectangularif | - ] reCtangu 13]' map
[ty S s
e Mask data: the study
Extract_spatd -
: area shape
Inside Gt
P T
| -01.0758816393262 -78.9741557365979
8| 39.386074039385 | #]41.134017068433

Figure 74. Steps for using Extraction Tool in ArcGIS to clip the rectangular map.

Figure 75. Classifying the probability of landslide occurrence in ArcGIS.
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9.2. Local platform

9.2.1 Deliveries

Number Items
1 Python code
2 Relevant data (landslide database in CSV and causative factors in TIF files)
3 ArcGIS template file

9.2.2 Requirements

Number Items
1 A local platform for Python (Jupyter Notebook is recommended)

9.2.3 Instructions

The same items as those from the Cloud platform will be provided. The only
difference between the local platform and the cloud platform is the location of directories for
data storage. Instead of uploading the relevant data to Google Drive in Step 1, the user can
upload the folder to the local Python environment directly, and the downloaded data (rainfall
data) will be stored in the local directory. There is no need to link to Google Drive when
implementing the code. The essential part of this approach is to install and set up a local
environment for Python language correctly. Step 3 and Step 4 will be the same as those for the

cloud platform.
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